• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Chenglong, Cao Huawei, Wang Guobo, Hao Qinfen, Zhang Yang, Ye Xiaochun, Fan Dongrui. Efficient Optimization of Graph Computing on High-Throughput Computer[J]. Journal of Computer Research and Development, 2020, 57(6): 1152-1163. DOI: 10.7544/issn1000-1239.2020.20200115
Citation: Zhang Chenglong, Cao Huawei, Wang Guobo, Hao Qinfen, Zhang Yang, Ye Xiaochun, Fan Dongrui. Efficient Optimization of Graph Computing on High-Throughput Computer[J]. Journal of Computer Research and Development, 2020, 57(6): 1152-1163. DOI: 10.7544/issn1000-1239.2020.20200115

Efficient Optimization of Graph Computing on High-Throughput Computer

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1003501), the National Natural Science Foundation of China (11904370, 61732018, 61672499), and the Innovation Project of the State Key Laboratory of Computer Architecture (CARCH4509).
More Information
  • Published Date: May 31, 2020
  • With the rapid development of computing technology, the scale of graph increases explosively and large-scale graph computing has been the focus in recent years. Breadth first search (BFS) is a classic algorithm to solve graph traverse problem. It is the main kernel of Graph500 benchmark that evaluates the performance of supercomputers and servers in terms of data-intensive applications. High-throughput computer (HTC) adopts ARM-based many-core architecture, which has the characteristics of high concurrency, strong real-time, low-power consumption. The optimization of BFS algorithm has made a series of progress on single-node systems. In this paper, we first introduce parallel BFS algorithm and existing optimizations. Then we propose two optimization techniques for HTC to improve the efficiency of data access and data locality. We systematically evaluate the performance of BFS algorithm on HTC. For the Kronecker graph with 2scale=230whose vertices are 230 and edges are 234, the average performance on HTC is 24.26 GTEPS and 1.18 times faster than the two-way x86 server. In terms of energy efficiency, the result on HTC is 181.04 MTEPS/W and rank 2nd place on the June 2019 Green Graph500 big data list. To our best knowledge, this is the first work that evaluates BFS performance on HTC platform. HTC is suitable for data intensive applications such as large-scale graph computing.
  • Related Articles

    [1]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [2]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [3]Liu Runtao, Hao Zhongxiao. Fast Algorithm of Nearest Neighbor Query for Line Segments of Spatial Database[J]. Journal of Computer Research and Development, 2011, 48(12): 2379-2384.
    [4]Miao Dongjing, Shi Shengfei, and Li Jianzhong. An Algorithm on Probabilistic Frequent Nearest Neighbor Query over Snapshots of Uncertain Database with Locally Correlation[J]. Journal of Computer Research and Development, 2011, 48(10): 1812-1822.
    [5]Liao Haojun, Han Jizhong, Fang Jinyun. All-Nearest-Neighbor Queries Processing in Spatial Databases[J]. Journal of Computer Research and Development, 2011, 48(1): 86-93.
    [6]Sun Dongpu, Hao Zhongxiao. Group Nearest Neighbor Queries Based on Voronoi Diagrams[J]. Journal of Computer Research and Development, 2010, 47(7): 1244-1251.
    [7]Sun Dongpu, Hao Zhongxiao. Multi-Type Nearest Neighbor Queries with Partial Range Constrained[J]. Journal of Computer Research and Development, 2009, 46(6): 1036-1042.
    [8]Hao Zhongxiao, Wang Yudong, He Yunbin. Line Segment Nearest Neighbor Query of Spatial Database[J]. Journal of Computer Research and Development, 2008, 45(9): 1539-1545.
    [9]Zhang Jing, Lu Hong, and Xue Xiangyang. Efficient Sports Video Retrieval Based on Index Structure[J]. Journal of Computer Research and Development, 2006, 43(11): 1953-1958.
    [10]Dong Daoguo, Liu Zhenzhong, and Xue Xiangyang. VA-Trie: A New and Efficient High Dimensional Index Structure for Approximate k Nearest Neighbor Query[J]. Journal of Computer Research and Development, 2005, 42(12): 2213-2218.
  • Cited by

    Periodical cited type(6)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 徐怡,邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择. 软件学报. 2024(04): 1945-1963 .
    3. 徐怡,张杰. 基于划分序乘积空间的多尺度决策模型. 智能系统学报. 2024(06): 1528-1538 .
    4. 王宝丽,王涛,廉侃超,韩素青. 粒空间中划分知识的正交补研究. 山东大学学报(理学版). 2022(03): 31-40 .
    5. 陈丽芳,代琪,付其峰. 基于粒计算的ELM加权集成算法研究. 华北理工大学学报(自然科学版). 2020(03): 126-132 .
    6. 应申,王子豪,杜志强,丁火平,李翔翔. 数据粒度均衡的二维矢量瓦片构建方法. 地理信息世界. 2020(04): 66-74 .

    Other cited types(12)

Catalog

    Article views (1500) PDF downloads (693) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return