• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zheng Yimei, Jia Caiyan, Chang Zhenhai, Li Xuanya. A Degree Corrected Stochastic Block Model for Attributed Networks[J]. Journal of Computer Research and Development, 2020, 57(8): 1650-1662. DOI: 10.7544/issn1000-1239.2020.20200158
Citation: Zheng Yimei, Jia Caiyan, Chang Zhenhai, Li Xuanya. A Degree Corrected Stochastic Block Model for Attributed Networks[J]. Journal of Computer Research and Development, 2020, 57(8): 1650-1662. DOI: 10.7544/issn1000-1239.2020.20200158

A Degree Corrected Stochastic Block Model for Attributed Networks

Funds: This work was supported by the National Natural Science Foundation of China (61876016, 61632004), the Fundamental Research Funds for the Central Universities (2019JBZ110), and the Baidu Pinecone Program.
More Information
  • Published Date: July 31, 2020
  • Community detection is an important task in complex network analysis. The existing community detection methods mostly focus on utilizing the simple network structure, while the methods of integrating network topology and node attributes are also mainly aimed at the traditional community structure, which fails to detect the bipartite structure, mixed structure, etc. However, the degree of each node in the network will affect the composition of the links in the network, as well as the distribution of the community structure. This paper proposes a method called DPSB_PG for attributed networks community detection based on the stochastic block model. Unlike other generative models for attributed networks, in this method, the generation of node links and node attributes both followes the Poisson distribution, and considers the probability between communities based on the stochastic block model. Moreover, the idea of degree corrected is integrated in the process of generating node links. Finally, in order to obtain the community membership of nodes, the expectation-maximization algorithm is used to infer the parameters of the model. The experimental results on the real networks show that the DPSB_PG inherits the advantages of the stochastic block model and can detect the general community structure in networks. Since the introduction of the idea of degree corrected, this model has a good data fitting ability. Overall, the performance of this model is superior to other existing state-of-the-art community detection algorithms for both attributed networks and non-attributed networks.
  • Related Articles

    [1]Yu Zishu, Wang Yifan, Zeng Chen, Zhang Xingzhou, Peng Xiaohui, Xu Zhiwei. Grip System for Multi-Runtime Support in Things-Edge-Cloud Collaborative Applications[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440676
    [2]Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
    [3]Wang Rui, Qi Jianpeng, Chen Liang, Yang Long. Survey of Collaborative Inference for Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(2): 398-414. DOI: 10.7544/issn1000-1239.202110867
    [4]Zhang Wenzhu, Yu Jinghua. Task Offloading Strategy in Mobile Edge Computing Based on Cloud-Edge-End Cooperation[J]. Journal of Computer Research and Development, 2023, 60(2): 371-385. DOI: 10.7544/issn1000-1239.202110803
    [5]Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
    [6]Huang Qianyi, Li Zhiyang, Xie Wentao, Zhang Qian. Edge Computing in Smart Homes[J]. Journal of Computer Research and Development, 2020, 57(9): 1800-1809. DOI: 10.7544/issn1000-1239.2020.20200253
    [7]Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
    [8]Shi Weisong, Zhang Xingzhou, Wang Yifan, Zhang Qingyang. Edge Computing: State-of-the-Art and Future Directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89. DOI: 10.7544/issn1000-1239.2019.20180760
    [9]Deng Xiaoheng, Guan Peiyuan, Wan Zhiwen, Liu Enlu, Luo Jie, Zhao Zhihui, Liu Yajun, Zhang Honggang. Integrated Trust Based Resource Cooperation in Edge Computing[J]. Journal of Computer Research and Development, 2018, 55(3): 449-477. DOI: 10.7544/issn1000-1239.2018.20170800
    [10]Zhao Ziming, Liu Fang, Cai Zhiping, Xiao Nong. Edge Computing: Platforms, Applications and Challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327-337. DOI: 10.7544/issn1000-1239.2018.20170228

Catalog

    Article views (1025) PDF downloads (328) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return