• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhu Yingwen, Chen Songcan. High Dimensional Data Stream Clustering Algorithm Based on Random Projection[J]. Journal of Computer Research and Development, 2020, 57(8): 1683-1696. DOI: 10.7544/issn1000-1239.2020.20200432
Citation: Zhu Yingwen, Chen Songcan. High Dimensional Data Stream Clustering Algorithm Based on Random Projection[J]. Journal of Computer Research and Development, 2020, 57(8): 1683-1696. DOI: 10.7544/issn1000-1239.2020.20200432

High Dimensional Data Stream Clustering Algorithm Based on Random Projection

Funds: This work was supported by the Key Program of National Natural Science Foundation of China (61732006).
More Information
  • Published Date: July 31, 2020
  • High dimensional data streams emerge ubiquitously in many real-world applications such as network monitoring. Clustering such data streams differs from traditional data clustering algorithm where the given datasets are generally static and can be read and processed repeatedly, thus facing more challenges due to having to satisfy such constraints as bounded memory, single-pass, real-time response and concept-drift detection. Recently many methods of such type have been proposed. However, when dealing with high dimensional data, they often result in high computational cost and poor performance due to the curse of dimensionality. To address the above problem, in this paper we present a new clustering algorithm for data streams, called RPFART, by combining the random projection method with the adaptive resonance theory (ART) model that has linear computational complexity, uses a single parameter, i.e., the vigilance parameter to identify data clusters, and is robust to modest parameters setting. To gain insights into the performance improvement obtained by our algorithm, we analyze and identify the major influence of random projection on ART. Although our method is embarrassingly simple just by incorporating the random projection into ART, the experimental results on variety of benchmark datasets indicate that our method can still achieve comparable or even better performance than RPGStream algorithm even if the raw dimension is compressed up to 10% of the original one. For ACT1 dataset, its dimension is reduced from 67500 to 6750.
  • Related Articles

    [1]Zhang Xiaojian, Zhang Leilei, Zhang Zhizheng. Federated Learning Method Under User-Level Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(2): 472-487. DOI: 10.7544/issn1000-1239.202330167
    [2]Fu Nan, Ni Weiwei, Jiang Zepeng, Hou Lihe, Zhang Dongyue, Zhang Ruyu. Directed Graph Clustering Algorithm with Edge Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(1): 256-268. DOI: 10.7544/issn1000-1239.202330193
    [3]Wu Wanqing, Zhao Yongxin, Wang Qiao, Di Chaofan. A Safe Storage and Release Method of Trajectory Data Satisfying Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(11): 2430-2443. DOI: 10.7544/issn1000-1239.2021.20210589
    [4]Zhang Yuxuan, Wei Jianghong, Li Ji, Liu Wenfen, Hu Xuexian. Graph Degree Histogram Publication Method with Node-Differential Privacy[J]. Journal of Computer Research and Development, 2019, 56(3): 508-520. DOI: 10.7544/issn1000-1239.2019.20170886
    [5]Zhu Weijun, You Qingguang, Yang Weidong, Zhou Qinglei. Trajectory Privacy Preserving Based on Statistical Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(12): 2825-2832. DOI: 10.7544/issn1000-1239.2017.20160647
    [6]He Ming, Chang Mengmeng, Wu Xiaofei. A Collaborative Filtering Recommendation Method Based on Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(7): 1439-1451. DOI: 10.7544/issn1000-1239.2017.20160207
    [7]Zhang Xiaojian, Shao Chao, Meng Xiaofeng. Accurate Histogram Release under Differential Privacy[J]. Journal of Computer Research and Development, 2016, 53(5): 1106-1117. DOI: 10.7544/issn1000-1239.2016.20150304
    [8]Lu Guoqing, Zhang Xiaojian, Ding Liping, Li Yanfeng, Liao Xin. Frequent Sequential Pattern Mining under Differential Privacy[J]. Journal of Computer Research and Development, 2015, 52(12): 2789-2801. DOI: 10.7544/issn1000-1239.2015.20140516
    [9]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [10]Ouyang Jia, Yin Jian, Liu Shaopeng, Liu Yubao. An Effective Differential Privacy Transaction Data Publication Strategy[J]. Journal of Computer Research and Development, 2014, 51(10): 2195-2205. DOI: 10.7544/issn1000-1239.2014.20130824

Catalog

    Article views (719) PDF downloads (374) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return