• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Yuan, Chen Zhaojiong, Ye Dongyi. A Coloring Algorithm for Flower Line Drawings with Meticulous Effect Based on Semantic Matching of Reference Images[J]. Journal of Computer Research and Development, 2022, 59(6): 1271-1285. DOI: 10.7544/issn1000-1239.20201035
Citation: Li Yuan, Chen Zhaojiong, Ye Dongyi. A Coloring Algorithm for Flower Line Drawings with Meticulous Effect Based on Semantic Matching of Reference Images[J]. Journal of Computer Research and Development, 2022, 59(6): 1271-1285. DOI: 10.7544/issn1000-1239.20201035

A Coloring Algorithm for Flower Line Drawings with Meticulous Effect Based on Semantic Matching of Reference Images

Funds: This work was supported by the National Natural Science Foundation of China (61672158) and the Natural Science Foundation of Fujian Province (2018J01798).
More Information
  • Published Date: May 31, 2022
  • The problem of coloring flower line drawings with meticulous effect based on a reference image is addressed. Existing reference-based coloring algorithms for line drawing are difficult to learn and simulate the unique color gradient effect of meticulous flower paintings. Moreover, the reference image in these algorithms is usually required to have similar geometric layout structure to the line drawing, which limits the applicability of the algorithms. Therefore, it is difficult to directly apply existing algorithms to accomplish coloring of line drawings with meticulous effect. On the basis of conditional generative adversarial network(CGAN) framework, a coloring algorithm for flower line drawings with meticulous effect is proposed by means of semantic matching between the reference image and the line drawing. In terms of network structure design, the proposed algorithm uses U-Net as the basis of the generator and designs two additional sub-modules. One is the semantic positioning sub-module. This module pre-trains a semantic segmentation network to generate a semantic label map of the flower line drawing. The label map is encoded as an adaptive instance normalization affine parameter and then introduced into the coloring model to improve the recognition ability of different semantic regions and the accuracy of color positioning. The other is the color coding sub-module. This module extracts the color features of the reference image, and then splices to the first three decoding layers of the generator, in which way, the color information is injected into the color model. Combining this module with semantic location module, our algorithm enhances the learning and simulation of gradient color pattern. In network training stage, the algorithm does not train the model on “original meticulous flower work-flower line drawing” data pairs. Instead, a perturbed version of the original work via such perturbation operations as disturbing the original geometric structure is generated and then “perturbed version-flower line drawing” data pairs are used to train our model, which turns out to reduce the model’s dependence on the spatial geometry layout of the original work and to then improve the applicability of the proposed algorithm. The experimental results show that the proposed algorithm has a correct response to the color semantics of the reference image selected by the user. It is also shown that the introduced structure of semantic positioning module and color coding module could improve the simulation effect of gradient colors and realize the colorization of the flower line drawing under the guidance of different reference images, as well as diversified coloring results.
  • Related Articles

    [1]Qu Zhiguo, Chen Weilong, Sun Le, Liu Wenjie, Zhang Yanchun. ECG-QGAN: A ECG Generative Information System Based on Quantum Generative Adversarial Networks[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440527
    [2]Li Tong, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Task-Adaptive End-to-End Networks for Stereo Matching[J]. Journal of Computer Research and Development, 2020, 57(7): 1531-1538. DOI: 10.7544/issn1000-1239.2020.20190478
    [3]Jia Yingxia, Lang Congyan, Feng Songhe. A Semantic Segmentation Method of Traffic Scene Based on Categories-Aware Domain Adaptation[J]. Journal of Computer Research and Development, 2020, 57(4): 876-887. DOI: 10.7544/issn1000-1239.2020.20190475
    [4]Tian Jiwei, Wang Jinsong, Shi Kai. Positive and Unlabeled Generative Adversarial Network on POI Positioning[J]. Journal of Computer Research and Development, 2019, 56(9): 1843-1850. DOI: 10.7544/issn1000-1239.2019.20180847
    [5]Ge Qi, Wei Zhihui, Xiao Liang, Zhang Jun. Adaptive Fast Image Segmentation Model Based on Local Feature[J]. Journal of Computer Research and Development, 2013, 50(4): 815-822.
    [6]Han Hu, Shan Shiguang, Chen Xilin, Gao Wen. A Lighting Normalization Approach Exploiting Face Symmetry[J]. Journal of Computer Research and Development, 2013, 50(4): 767-775.
    [7]Zhu Feng, Luo Limin, Song Yuqing, Chen Jianmei, Zuo Xin. Adaptive Spatially Neighborhood Information Gaussian Mixture Model for Image Segmentation[J]. Journal of Computer Research and Development, 2011, 48(11): 2000-2007.
    [8]Chen Yarui and Liao Shizhong. A Normalized Structure Selection Algorithm Based on Coupling for Gaussian Mean Fields[J]. Journal of Computer Research and Development, 2010, 47(9): 1497-1503.
    [9]Zhang Peiyun, Huang Bo, Sun Yamin. A Web Services Matching Mechanism Based on Semantics and QoS-Aware Aspect[J]. Journal of Computer Research and Development, 2010, 47(5): 780-787.
    [10]Yu Wanjun, Liu Dayou, Liu Quan, Yang Bo. An Approach to Monitoring and Controlling Workflow Systems Based on the Instance State[J]. Journal of Computer Research and Development, 2006, 43(8): 1345-1353.
  • Cited by

    Periodical cited type(24)

    1. 许炜,李卓卓,方向阳. 多向度的数据分类分级:目标、逻辑与路径. 图书情报工作. 2025(01): 68-79 .
    2. 刘怀骏,徐劲松. 基于区块链和代理重加密的快递出海数据共享方案. 物流科技. 2025(03): 82-86 .
    3. 白久君,陈雪波,李大明,刘锐. 构建数字化未来:算网融合的战略应用与研究. 广播电视网络. 2025(02): 28-31 .
    4. 任静,李筱永,梁恒瑜,赵依凡,吴佼玥. 脑科学视角下经颅磁刺激治疗精神障碍的法律问题及对策研究. 中国全科医学. 2024(08): 1015-1020 .
    5. 薛俊伟,吴凯,周静. 耳机式物联网血氧监护系统的设计. 中国医学物理学杂志. 2024(01): 60-65 .
    6. 杨斌,王正阳,程梓航,赵慧英,王鑫,管宇,程新洲. 基于扩散模型生成数据重构的客户流失预测. 计算机研究与发展. 2024(02): 324-337 . 本站查看
    7. 李敏,肖迪,陈律君. 兼顾通信效率与效用的自适应高斯差分隐私个性化联邦学习. 计算机学报. 2024(04): 924-946 .
    8. 刘立. 大数据技术在中职计算机教学应用初探. 科技风. 2024(12): 64-66+167 .
    9. 孔庆苹. 大数据环境下物联网设备数据隐私保护研究. 无线互联科技. 2024(07): 116-118 .
    10. 徐帅. 数据隐私保护与法律责任:新形势下的挑战与应对. 法制博览. 2024(14): 95-97 .
    11. 张海霞. 安全路由协议综合交互信任评价及性能分析. 山西电子技术. 2024(03): 69-70+90 .
    12. 张世涛,祁舒慧. 社交媒体数据分析在市场审计中的运用. 赤峰学院学报(自然科学版). 2024(07): 30-32 .
    13. 张国业,郎雅婧. 科技支撑区域工业治理能力提升路向选择及发展布局. 现代工业经济和信息化. 2024(10): 246-248 .
    14. 李卓卓,刘子轶. 从分野到融合:多学科视角下的数据跨境研究综述. 情报杂志. 2024(12): 198-207 .
    15. 蒋雷,朱婷婷,汤海林. 大数据背景下塑料加工行业的数据安全与隐私保护. 塑料助剂. 2024(06): 78-82 .
    16. 苗权,张弛,房硕,刘季平. 我国数据跨境流动管理的创新实践和思考. 互联网天地. 2023(03): 49-52 .
    17. 冯凡. 大数据分析技术下的隐私保护. 数字通信世界. 2023(03): 142-145 .
    18. 赵静. 基于区块链技术及数据挖掘技术推进数字经济发展. 科技资讯. 2023(15): 36-39 .
    19. 王鹏涛,徐润婕. AIGC介入知识生产下学术出版信任机制的重构研究. 图书情报知识. 2023(05): 87-96 .
    20. 赵尔波,苏玉成,黄少远. 医院部署GCP远程监查的多级安全防护设计与实践. 中国卫生信息管理杂志. 2023(05): 709-714 .
    21. 张铠,汪希,黄晋. 基于混沌技术的多域物联网敏感数据安全传输方法. 信息与电脑(理论版). 2023(16): 232-234 .
    22. 王大阜,王静,石宇凯,邓志文,贾志勇. 基于深度迁移学习的图像隐私目标检测研究. 图学学报. 2023(06): 1112-1120 .
    23. 郭赟赟,于浩. 突破语言障碍:ChatGPT在多语言教育中的作用与影响. 郑州师范教育. 2023(06): 48-53 .
    24. 姚莉娟,廖冬琴. 基于隐私保护的高校大数据挖掘平台设计. 无线互联科技. 2023(23): 50-54 .

    Other cited types(28)

Catalog

    Article views (140) PDF downloads (79) Cited by(52)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return