• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tian Jiahui, Lü Xixiang, Zou Renpeng, Zhao Bin, Li Yige. A Fair Resource Allocation Scheme in Federated Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1240-1254. DOI: 10.7544/issn1000-1239.20201081
Citation: Tian Jiahui, Lü Xixiang, Zou Renpeng, Zhao Bin, Li Yige. A Fair Resource Allocation Scheme in Federated Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1240-1254. DOI: 10.7544/issn1000-1239.20201081

A Fair Resource Allocation Scheme in Federated Learning

Funds: This work was supported by the National Natural Science Foundation of China (62072356) and the Key Research and Development Project of Shaanxi Province (2019ZDLGY12-08).
More Information
  • Published Date: May 31, 2022
  • Federated learning (FL) is a distributed machine learning framework that can be used to solve the data silos problem. Using the framework multiple participants collaborate to train a global model while keeping the data locally private. However, the traditional federated learning ignores the importance of fairness, which may influence the quality of the trained global model. As different participants hold different magnitudes data which are highly heterogeneous, traditional training methods such as natively minimizing an aggregate loss function may disproportionately advantage or disadvantage some of the devices. Thus the final global model shows a large gap in accuracy on different participants’ data. To train a global model in a more fair manner, we propose a fairness method called α-FedAvg. Using α-FedAvg participants can obtain a global model. That is, the final global model trained by all participants allows a more balanced distribution of accuracy on the participants’ local data. Meanwhile, we devise a method to yield the parameter α, which can improve the fairness of the global model while ensuring its performance. To evaluate our scheme, we test the global model on MNIST and CIFAR-10 datasets. Meanwhile, we compare α-FedAvg with other three fairness schemes on multiple datasets. Compared with existing schemes, our scheme achieves a better balance between fairness and effectiveness.
  • Related Articles

    [1]Guo Jing, Hu Cunchen, Bao Yungang. A Dynamic Resource Allocation Method for High-Density Colocation Scenario[J]. Journal of Computer Research and Development, 2024, 61(9): 2384-2399. DOI: 10.7544/issn1000-1239.202221043
    [2]Wang Fengjuan, Lü Pan, Jin Ouwen, Xing Qinghui, Deng Shuiguang. A Resource Allocation Method for Neuron Computer Operating System[J]. Journal of Computer Research and Development, 2023, 60(9): 1948-1959. DOI: 10.7544/issn1000-1239.202330422
    [3]Wang Haitao, Li Zhanhuai, Zhang Xiao, Bu Hailong, Kong Lanxin, Zhao Xiaonan. Virtual Machine Resources Allocation Methods Based on History Data[J]. Journal of Computer Research and Development, 2019, 56(4): 779-789. DOI: 10.7544/issn1000-1239.2019.20170831
    [4]Yuan Ying, Wang Cuirong, Wang Cong, Ren Tingting, Liu Bingyu. An Uncompleted Information Game Based Resources Allocation Model for Cloud Computing[J]. Journal of Computer Research and Development, 2016, 53(6): 1342-1351. DOI: 10.7544/issn1000-1239.2016.20150062
    [5]Wang Jinhai, Huang Chuanhe, Wang Jing, He Kai, Shi Jiaoli, Chen Xi. A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302. DOI: 10.7544/issn1000-1239.2015.20150168
    [6]Luo Zhangqi, Huang Kun, Zhang Dafang, Guan Hongtao, Xie Gaogang. A Many-Core Processor Resource Allocation Scheme for Packet Processing[J]. Journal of Computer Research and Development, 2014, 51(6): 1159-1166.
    [7]Peng Yuxing, Wu Jiqing, and Shen Rui. Distributed Computing Model and Supporting Technologies for the Dynamic Allocation of Internet Resources[J]. Journal of Computer Research and Development, 2011, 48(9): 1580-1588.
    [8]Yu Jiong, Tian Guozhong, Cao Yuanda, Sun Xianhe. A Resource Allocating Algorithm in Grid Workflow Based on Critical Regions Reliability[J]. Journal of Computer Research and Development, 2009, 46(11): 1821-1829.
    [9]Pang Di, Zhou Jihua, Hu Jinlong, Dong Jiangtao, Shi Jinglin. Uplink Resource Allocation in Wireless MIMO Systems[J]. Journal of Computer Research and Development, 2009, 46(11): 1787-1796.
    [10]Yang Juan, Bai Yun, Qiu Yuhui. EDCP—A Duplication Checking Process Used in Duplication Based Resource Allocation Policies[J]. Journal of Computer Research and Development, 2006, 43(7): 1233-1239.
  • Cited by

    Periodical cited type(7)

    1. 张淑芬,张宏扬,任志强,陈学斌. 联邦学习的公平性综述. 计算机应用. 2025(01): 1-14 .
    2. 朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京. 联邦学习的公平性研究综述. 大数据. 2024(01): 62-85 .
    3. 李锦辉,吴毓峰,余涛,潘振宁. 数据孤岛下基于联邦学习的用户电价响应刻画及其应用. 电力系统保护与控制. 2024(06): 164-176 .
    4. 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法. 山东大学学报(工学版). 2024(03): 55-63 .
    5. 赵泽华,梁美玉,薛哲,李昂,张珉. 基于数据质量评估的高效强化联邦学习节点动态采样优化. 智能系统学报. 2024(06): 1552-1561 .
    6. 杨秀清,彭长根,刘海,丁红发,汤寒林. 基于数据质量评估的公平联邦学习方案. 计算机与数字工程. 2022(06): 1278-1285 .
    7. 黎志鹏. 高可靠的联邦学习在图神经网络上的聚合方法. 工业控制计算机. 2022(10): 85-87+90 .

    Other cited types(9)

Catalog

    Article views (375) PDF downloads (219) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return