• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Jinhai, Huang Chuanhe, Wang Jing, He Kai, Shi Jiaoli, Chen Xi. A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302. DOI: 10.7544/issn1000-1239.2015.20150168
Citation: Wang Jinhai, Huang Chuanhe, Wang Jing, He Kai, Shi Jiaoli, Chen Xi. A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302. DOI: 10.7544/issn1000-1239.2015.20150168

A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy

More Information
  • Published Date: May 31, 2015
  • Resource allocation strategies are an important research hotspot about cloud computing at present. The most fundamental problem is how to fairly allocate the finite amount of resources to multiple users or applications in complex application under heterogeneous cloud computing architecture, at the same time, to achieve maximize resource utilization or efficiency. However, tasks or users are often greedy for classical resource allocation problems, therefore, under the condition of finite amount of resource, the fairness of resource allocation is particularly important. To meet different task requirements and achieve multiple types resource fairness, we design a heterogeneous cloud computing architecture and present an algorithm of maximizing multi-resource fairness based on dominant resource(MDRF). We further prove the related attributions of our algorithm such as Pareto efficiency, and give the definition of dominant resource entropy (DRE) and dominant resource weight (DRW). DRE accurately depicts the adaption degree between the resource requirement of user and the resource type of server allocated for user tasks, and makes the system more adaptive and improves the system resource utilization. DRW guarantees the priority of users obtaining resource when cooperating with the adopted Max-Min strategy guaranteeing fairness, and makes the system resource allocation more ordered. Experimental results demonstrate that our strategy has more higher resource utilization and makes resource requirements and resource provision more matching. Furthermore, our algorithm makes users achieve more dominant resource and improves the quality of service.
  • Related Articles

    [1]Xu Jingnan, Wang Leixia, Meng Xiaofeng. Research on Privacy Auditing in Data Governance[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202540530
    [2]Zhao Jingxin, Yue Xinghui, Feng Chongpeng, Zhang Jing, Li Yin, Wang Na, Ren Jiadong, Zhang Haoxing, Wu Gaofei, Zhu Xiaoyan, Zhang Yuqing. Survey of Data Privacy Security Based on General Data Protection Regulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2130-2163. DOI: 10.7544/issn1000-1239.20220800
    [3]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [4]Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
    [5]Liu Qiang, Li Tong, Yu Yang, Cai Zhiping, Zhou Tongqing. Data Security and Privacy Preserving Techniques for Wearable Devices: A Survey[J]. Journal of Computer Research and Development, 2018, 55(1): 14-29. DOI: 10.7544/issn1000-1239.2018.20160765
    [6]Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465
    [7]Cao Zhenfu, Dong Xiaolei, Zhou Jun, Shen Jiachen, Ning Jianting, Gong Junqing. Research Advances on Big Data Security and Privacy Preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2137-2151. DOI: 10.7544/issn1000-1239.2016.20160684
    [8]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [9]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [10]Zhang Fengzhe, Chen Jin, Chen Haibo, and Zang Binyu. Lifetime Privacy and Self-Destruction of Data in the Cloud[J]. Journal of Computer Research and Development, 2011, 48(7): 1155-1167.
  • Cited by

    Periodical cited type(5)

    1. 李宁,徐丽娜,方国勇,马英晋. 结合容错编码的量子化学分布式计算. 化学学报. 2024(02): 138-145 .
    2. 陈雨梁,林夕,李建华. 基于编码计算的分布式人工智能系统安全防护研究. 网络空间安全. 2024(01): 108-112 .
    3. 郭中孚,季新生,游伟,赵宇,巩小锐. 基于喷泉码的隐私保护编码计算卸载方法. 信息工程大学学报. 2024(05): 559-566 .
    4. 杨在航,李跃鹏,曾德泽. 基于编码计算的边端融合计算发展趋势. 自动化博览. 2023(02): 45-49 .
    5. 史洪玮,洪道诚,施连敏,杨迎尧. 异构编码联邦学习. 华东师范大学学报(自然科学版). 2023(05): 110-121 .

    Other cited types(5)

Catalog

    Article views (1399) PDF downloads (1206) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return