• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tan Jianhao, Zhang Siyuan. Visual Tracking Algorithm Based on Adaptive Spatial Regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. DOI: 10.7544/issn1000-1239.2021.20200021
Citation: Tan Jianhao, Zhang Siyuan. Visual Tracking Algorithm Based on Adaptive Spatial Regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. DOI: 10.7544/issn1000-1239.2021.20200021

Visual Tracking Algorithm Based on Adaptive Spatial Regularization

Funds: This work was supported by the National Natural Science Foundation of China (61433016) and the Science and Technology Innovation Program of Hunan Province (2017XK2102).
More Information
  • Published Date: January 31, 2021
  • In the visual tracking algorithm based on correlation filters, the method of generating sample sets by cyclic shift greatly reduces the amount of calculation. However, it will also bring about boundary effects, and the resulting error samples will weaken the discriminative ability of the classifier. In order to solve the above problem, a visual tracking algorithm based on adaptive spatial regularization is proposed. An adaptive spatial regularization term is introduced into the classic filtering model. By establishing the correlation of regularization weights between adjacent frames, the regularization weights of the model can be adaptively adjusted. In this way, the risk of overfitting when processing unreal samples can be reduced, thereby mitigating the boundary effect. We adopt a scale estimation strategy with adaptive aspect ratio, which can accurately track the scale change of the target. In addition, the update strategy based on the similarity of color histograms is used to avoid the model update when the tracking is inaccurate, thereby suppressing model drift and improving tracking accuracy and speed. Experiments show that the success rate and accuracy of our algorithm on UAV123, OTB2013, OTB2015 are higher than all the compared algorithms. And even in various complex scenes, our algorithm can still maintain a high tracking success rate. Especially in the presence of motion blur and in-plane rotation, the success rate scores are 9.72% and 9.03% higher than the second best algorithm, respectively, which shows that the algorithm has good adaptability.
  • Related Articles

    [1]Du Jinming, Sun Yuanyuan, Lin Hongfei, Yang Liang. Conversational Emotion Recognition Incorporating Knowledge Graph and Curriculum Learning[J]. Journal of Computer Research and Development, 2024, 61(5): 1299-1309. DOI: 10.7544/issn1000-1239.202220951
    [2]Liu Xinghong, Zhou Yi, Zhou Tao, Qin Jie. Self-Paced Learning for Open-Set Domain Adaptation[J]. Journal of Computer Research and Development, 2023, 60(8): 1711-1726. DOI: 10.7544/issn1000-1239.202330210
    [3]Wen Yimin, Yuan Zhe, Yu Hang. A New Semi-Supervised Inductive Transfer Learning Framework: Co-Transfer[J]. Journal of Computer Research and Development, 2023, 60(7): 1603-1614. DOI: 10.7544/issn1000-1239.202220232
    [4]Chen Zhenzhu, Zhou Chunyi, Su Mang, Gao Yansong, Fu Anmin. Research Progress of Secure Outsourced Computing for Machine Learning[J]. Journal of Computer Research and Development, 2023, 60(7): 1450-1466. DOI: 10.7544/issn1000-1239.202220767
    [5]Lu Shaoshuai, Chen Long, Lu Guangyue, Guan Ziyu, Xie Fei. Weakly-Supervised Contrastive Learning Framework for Few-Shot Sentiment Classification Tasks[J]. Journal of Computer Research and Development, 2022, 59(9): 2003-2014. DOI: 10.7544/issn1000-1239.20210699
    [6]Zhuo Junbao, Su Chi, Wang Shuhui, Huang Qingming. Min-Entropy Transfer Adversarial Hashing[J]. Journal of Computer Research and Development, 2020, 57(4): 888-896. DOI: 10.7544/issn1000-1239.2020.20190476
    [7]Feng Wei, Hang Wenlong, Liang Shuang, Liu Xuejun, Wang Hui. Deep Stack Least Square Classifier with Inter-Layer Model Knowledge Transfer[J]. Journal of Computer Research and Development, 2019, 56(12): 2589-2599. DOI: 10.7544/issn1000-1239.2019.20180741
    [8]Wen Yimin, Tang Shiqi, Feng Chao, Gao Kai. Online Transfer Learning for Mining Recurring Concept in Data Stream Classification[J]. Journal of Computer Research and Development, 2016, 53(8): 1781-1791. DOI: 10.7544/issn1000-1239.2016.20160223
    [9]Hong Jiaming, Yin Jian, Huang Yun, Liu Yubao, and Wang Jiahai. TrSVM: A Transfer Learning Algorithm Using Domain Similarity[J]. Journal of Computer Research and Development, 2011, 48(10): 1823-1830.
    [10]Mei Canhua, Zhang Yuhong, Hu Xuegang, and Li Peipei. A Weighted Algorithm of Inductive Transfer Learning Based on Maximum Entropy Model[J]. Journal of Computer Research and Development, 2011, 48(9): 1722-1728.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return