• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhou Huabing, Hou Jilei, Wu Wei, Zhang Yanduo, Wu Yuntao, Ma Jiayi. Infrared and Visible Image Fusion Based on Semantic Segmentation[J]. Journal of Computer Research and Development, 2021, 58(2): 436-443. DOI: 10.7544/issn1000-1239.2021.20200244
Citation: Zhou Huabing, Hou Jilei, Wu Wei, Zhang Yanduo, Wu Yuntao, Ma Jiayi. Infrared and Visible Image Fusion Based on Semantic Segmentation[J]. Journal of Computer Research and Development, 2021, 58(2): 436-443. DOI: 10.7544/issn1000-1239.2021.20200244

Infrared and Visible Image Fusion Based on Semantic Segmentation

Funds: This work was supported by the National Natural Science Foundation of China (61771353, 61773295, 62072350, 41501505) and the Hubei Technology Innovation Project (2019AAA045).
More Information
  • Published Date: January 31, 2021
  • Infrared images can distinguish targets from their backgrounds due to the difference in thermal radiation even in poor lighting conditions. By contrast, visible images can represent texture details with high spatial resolution. Meanwhile, both of infrared and visible images preserve corresponding semantic information. Therefore, infrared and visible image fusion should keep both radiation information of the infrared image and texture details of the visible image; additionally, it needs to reserve the semantic information of both. Semantic segmentation can transform the source images into the masks with semantic information. In this paper, an infrared and visible image fusion method is proposed based on semantic segmentation. It can overcome the shortcomings that the existing fusion methods are not specific to different regions. Considering the specific information for different regions of infrared and visible images, we design two loss functions for different regions to improve the quality of fused image under the framework of generative adversarial network. Firstly, we gain the masks of the infrared images with semantic information by semantic segmentation; then we use the masks to divide the infrared and visible images into infrared target area, infrared background area, visible target area, and visible background area. Secondly, we employ different methods to fuse the target and background area, respectively. Finally, we combine the two regions to obtain the final fused image. The experiment shows that the proposed method outperforms state-of-the-art, where our results have higher contrast in the target area and richer texture details in the background area.
  • Cited by

    Periodical cited type(9)

    1. 陈彩华,佘程熙,王庆阳. 可信机器学习综述. 工业工程. 2024(02): 14-26 .
    2. 饶高琦,周立炜. 论语言智能的治理. 语言战略研究. 2024(03): 38-48 .
    3. 穆春阳,李闯,马行,刘永鹿,杨科,刘宝成. 改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测. 组合机床与自动化加工技术. 2024(07): 156-160 .
    4. 喻继军,熊明华. 电子商务推荐系统公平性研究进展. 现代信息科技. 2023(14): 115-124 .
    5. 范卓娅,孟小峰. 算法公平与公平计算. 计算机研究与发展. 2023(09): 2048-2066 . 本站查看
    6. 吴雷,杜文研,林超然. 基于专利数据应用LDA和N-BEATS组合方法的技术主题预测研究. 数字图书馆论坛. 2023(11): 62-73 .
    7. 古天龙,李龙,常亮,罗义琴. 公平机器学习:概念、分析与设计. 计算机学报. 2022(05): 1018-1051 .
    8. 王文鑫,张健毅. 联邦学习公平性研究综述. 北京电子科技学院学报. 2022(02): 122-134 .
    9. 郁建兴,刘宇轩. 社会治理中的深度学习算法公平性. 信息技术与管理应用. 2022(01): 17-27 .

    Other cited types(12)

Catalog

    Article views (1530) PDF downloads (728) Cited by(21)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return