• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Chenglong, Yi Jiangyan, Tao Jianhua, Ma Haoxin, Tian Zhengkun, Fu Ruibo. Global and Temporal-Frequency Attention Based Network in Audio Deepfake Detection[J]. Journal of Computer Research and Development, 2021, 58(7): 1466-1475. DOI: 10.7544/issn1000-1239.2021.20200799
Citation: Wang Chenglong, Yi Jiangyan, Tao Jianhua, Ma Haoxin, Tian Zhengkun, Fu Ruibo. Global and Temporal-Frequency Attention Based Network in Audio Deepfake Detection[J]. Journal of Computer Research and Development, 2021, 58(7): 1466-1475. DOI: 10.7544/issn1000-1239.2021.20200799

Global and Temporal-Frequency Attention Based Network in Audio Deepfake Detection

Funds: This work was supported by the National Key Research and Development Program of China (2017YFC0820602), the National Natural Science Foundation of China (61831022, 61901473, 61771472, 61773379), and Inria-CAS Joint Research Project (173211KYSB20190049).
More Information
  • Published Date: June 30, 2021
  • Audio deepfake detection is a hot topic in recent years and has been widely concerned. At present, convolutional neural networks and their variants have made good progress in the task of audio deepfake detection. However, there are still two problems: 1) The assumption of current work is that each aspect of the feature map fed into the convolutional neural network has the same effect on the result, ignoring that the information emphasized at different locations on each dimensional feature map is different. 2) In addition, the current work focuses on the local information of the feature map, and cannot make use of the relationship between the feature map from the global view. To solve these challenges, we introduce a global and temporal-frequency attention based network that focuses on channel dimensions and temporal-frequency dimensions, respectively. Specifically, we introduced two parallel attention modules. One is the temporal-frequency attention module and the other is the global attention module. For the temporal-frequency attention module, we can update the features by using weighted aggregation on all temporal-frequency feature maps. For the global attention module, we draw on the idea of SE-Net to generate weights for each feature channel by parameters. And by this way, we can get the global distribution of the response on the feature channel. We have carried out a series of experiments on ASVspoof2019 LA open data set, and the results showed that the proposed model achieved good results, and the EER of the best model reached 4.12%, which refreshed the best results of the single model.
  • Related Articles

    [1]Yin Yuyu, Wu Guangqiang, Li Youhuizi, Wang Xinyu, Gao Honghao. A Machine Unlearning Method via Feature Constraint and Adaptive Loss Balance[J]. Journal of Computer Research and Development, 2024, 61(10): 2649-2661. DOI: 10.7544/issn1000-1239.202440476
    [2]Fan Ye, Peng Shujuan, Liu Xin, Cui Zhen, Wang Nannan. Cross-Modal Anomaly Detection via Hierarchical Deep Networks and Bi-Quintuple Loss[J]. Journal of Computer Research and Development, 2022, 59(12): 2770-2780. DOI: 10.7544/issn1000-1239.20210729
    [3]Zhang Qiang, Yang Jibin, Zhang Xiongwei, Cao Tieyong, Zheng Changyan. CS-Softmax: A Cosine Similarity-Based Softmax Loss Function[J]. Journal of Computer Research and Development, 2022, 59(4): 936-949. DOI: 10.7544/issn1000-1239.20200879
    [4]He Xianmin, Li Maoxi, He Yanqing. Siamese BERT-Networks Based Classification Mapping of Scientific and Technological Literature[J]. Journal of Computer Research and Development, 2021, 58(8): 1751-1760. DOI: 10.7544/issn1000-1239.2021.20210323
    [5]Wang Jina, Chen Junhua, Gao Jianhua. ECC Multi-Label Code Smell Detection Method Based on Ranking Loss[J]. Journal of Computer Research and Development, 2021, 58(1): 178-188. DOI: 10.7544/issn1000-1239.2021.20190836
    [6]Song Chuanming, He Xing, Min Xin, Wang Xianghai. Index Map Prediction by 2-Neighbor Joint Transition Probability in Palette Coding[J]. Journal of Computer Research and Development, 2018, 55(11): 2557-2568. DOI: 10.7544/issn1000-1239.2018.20170247
    [7]Zhou Yu, He Jianjun, Gu Hong, Zhang Junxing. A Fast Partial Label Learning Algorithm Based on Max-loss Function[J]. Journal of Computer Research and Development, 2016, 53(5): 1053-1062. DOI: 10.7544/issn1000-1239.2016.20150267
    [8]Zhu Yelei, Wang Yujun, Luo Qiang, and Tao Qing. A Soft-Thresholding Coordinate Descent Algorithm for Solving Truncated Hinge Loss[J]. Journal of Computer Research and Development, 2013, 50(11): 2295-2303.
    [9]Kong Kang, Tao Qing, Wang Qunshan, Chu Dejun. A Sub-Gadient Based Solver for L1-Rgularization+Hinge-Loss Problem[J]. Journal of Computer Research and Development, 2012, 49(7): 1494-1499.
    [10]Weng Dawei, Yin Yilong, Yang Gongping, and Qi Xiuyan. Singular Point Extraction from Fingerprint Based on Gaussian-Hermite Moment and Improved Poincare Index[J]. Journal of Computer Research and Development, 2008, 45(11): 1974-1984.
  • Cited by

    Periodical cited type(6)

    1. 唐续豪,刘发贵,王彬,李超,蒋俊,唐泉,陈维明,何凤文. 跨云环境下任务调度综述. 计算机研究与发展. 2023(06): 1262-1275 . 本站查看
    2. 仝青,郭云飞,霍树民,王亚文. 面向主动防御的多样性研究进展. 信息安全学报. 2022(03): 119-133 .
    3. 秦轶翚,马涛. 对等网络环境下多目标任务容错调度方法研究. 计算机仿真. 2021(08): 352-355 .
    4. 刘林东. 一种改进的wRR独立任务调度算法研究. 广东第二师范学院学报. 2020(03): 89-93 .
    5. 郑子秋,张卫东,刘宁,付秋璇,尹健康,贺红梅. 信息安全技术在企业ERP系统中的应用. 科技创新与应用. 2019(18): 174-176 .
    6. 徐俊,项倩红,肖刚. 基于改进混合蛙跳算法的云工作流负载均衡调度优化. 计算机科学. 2019(11): 315-322 .

    Other cited types(9)

Catalog

    Article views (747) PDF downloads (644) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return