• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
Citation: Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809

Information Propagation Prediction and Specific Information Suppression in Social Networks

Funds: This work was supported by the National Natural Science Foundation of China (61772133, 61972087), the National Social Science Foundation of China (19@ZH014), the Jiangsu Key Research and Development Program (BE2018706), the Natural Science Foundation of Jiangsu Province (SBK2019022870), the Jiangsu Key Laboratory of Computer Networking Technology, the Jiangsu Provincial Key Laboratory of Network and Information Security (BM2003201), and the Key Laboratory of Computer Network and Information Integration of Ministry of Education of China (93K-9).
More Information
  • Published Date: June 30, 2021
  • In recent years, with the increasing number of users in social networks such as Twitter, Facebook and Sina Weibo, the amount of information has rapidly expanded. The spread of untrue information hidden in massive information has brought adverse effects. How to regulate or suppress the spread of specific information is a technical challenge faced by network information management. In order to solve this problem, first of all, the independent information forwarding prediction mechanism based on machine learning method, which does not depend on the propagation model is proposed, so as to predict the information propagation. Secondly, based on the independent cascade model, considering the particularity of the scenario in this paper, the asynchronous information unequal competition propagation model is proposed as the competitive propagation mechanism of specific information and immune information. Finally, three selection algorithms of seed nodes are proposed and the immune information is widely spread in the network by injecting immune information into the seed nodes, so as to suppress the spread of specific information. Experiments based on real social network data show that the information propagation prediction model and the selection algorithms of seed nodes proposed have good effects on the regulation and suppression of specific information propagation.
  • Cited by

    Periodical cited type(3)

    1. 白天,肖鸣宇. 反馈集与子集反馈集问题的计算复杂性研究进展. 计算机研究与发展. 2025(01): 104-118 . 本站查看
    2. 卢昆,张嘉宇,张宏莉,方滨兴. 面向社交网络的异常传播研究综述. 通信学报. 2024(05): 191-213 .
    3. 李攀攀,谢正霞,王赠凯,靳锐. 一种基于信息DNA的互联网信息内容传播及演化追溯方法. 电信科学. 2022(11): 36-46 .

    Other cited types(5)

Catalog

    Article views (598) PDF downloads (471) Cited by(8)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return