• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Huang Xunhua, Zhang Fengbin, Fan Haoyi, Xi Liang. Multimodal Adversarial Learning Based Unsupervised Time Series Anomaly Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1655-1667. DOI: 10.7544/issn1000-1239.2021.20201037
Citation: Huang Xunhua, Zhang Fengbin, Fan Haoyi, Xi Liang. Multimodal Adversarial Learning Based Unsupervised Time Series Anomaly Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1655-1667. DOI: 10.7544/issn1000-1239.2021.20201037

Multimodal Adversarial Learning Based Unsupervised Time Series Anomaly Detection

Funds: This work was supported by the National Natural Science Foundation of China (61172168).
More Information
  • Published Date: July 31, 2021
  • Time series anomaly detection is one of the most important research directions in machine learning, which aims to find the patterns that deviate significantly from the normal behavior of time series. However, most of the existing methods for anomaly detection of time series are based on single-modality feature learning, which ignores the relevance and complementarity of the characteristic distribution of time series in multi-modality space, and consequently fails to make full use of the existing information for learning. To alleviate the above problems, in this paper, we present a time series anomaly detection model based on multimodal adversarial learning. Firstly, we convert the original time series into the frequency domain to construct multi-modality time series representation. Then, based on the constructed multi-modality representation, we propose a multimodal generated adversarial network model to learn normal data’s distributions in time domain and frequency domain jointly. Finally, by modeling the anomaly detection problem as the data reconstruction problem in time domain and frequency domain, we measure the anomaly score of time series from both the time domain and frequency domain perspectives. We verify the proposed method on the time series data sets of UCR and MIT-BIH. Experimental results on the 6 data sets of UCR and MIT-BIH show that, compared with the state-of-the-arts, the proposed method improves the AUC and AP metrics of anomaly detection performance by 12.50% and 21.59% respectively.
  • Cited by

    Periodical cited type(14)

    1. 陈鹏,邓淼磊,樊好义,张德贤,韩涵. 心电特征引导下的自监督房颤异常检测方法. 计算机工程与应用. 2025(02): 208-218 .
    2. 陈泽健,李佐勇,胡蓉,樊好义. 受限分布映射和伪异常校准引导下的时序异常检测. 计算机工程与应用. 2025(05): 134-146 .
    3. 陈红松,刘新蕊,陶子美,王志恒. 基于深度学习的时序数据异常检测研究综述. 信息网络安全. 2025(03): 364-391 .
    4. 张钰,吕干云,胥家伟,刘柏岑,臧禹. 基于LC-GAN的电力碳排放数据异常检测方法. 电气自动化. 2024(02): 91-94 .
    5. 李永飞,李铭洋,常鑫,曹可欣. 基于可解释性深度学习的物联网水质监测数据异常检测. 计算机工程. 2024(06): 179-187 .
    6. 韩涵,黄训华,常慧慧,樊好义,陈鹏,陈姞伽. 心电领域中的自监督学习方法综述. 计算机科学与探索. 2024(07): 1683-1704 .
    7. 叶苗,程锦,黄源,蒋秋香,王勇. 面向WSN异常节点检测的融合重构机制与对比学习方法. 通信学报. 2024(09): 153-169 .
    8. 赵子晗,段同乐,张冬宁. 基于滑动窗口的直升机序列异常检测算法. 计算机测量与控制. 2023(02): 41-47+54 .
    9. 霍纬纲,梁锐,李永华. 基于随机Transformer的多维时间序列异常检测模型. 通信学报. 2023(02): 94-103 .
    10. 张国华,燕雪峰,关东海. 基于多模态特征融合的时间序列异常检测. 计算机科学. 2023(S1): 548-554 .
    11. 樊芮,陈湘媛,王冠男,崔艳辉. 不平衡数据集异常检测和分类算法. 电力系统及其自动化学报. 2023(09): 112-119 .
    12. 孙俊,谢振平,王洪波. 耦合演化采样和深度解码的可解释网络流量异常检测模型. 智能系统学报. 2023(05): 1070-1078 .
    13. 戈宁振,翁小清,袁子璇. 基于子空间重构的无监督时间序列异常检测. 智能计算机与应用. 2023(11): 119-127 .
    14. 刘艺. 基于多模态参数的土木施工工程机械自动化方法研究. 自动化与仪器仪表. 2022(08): 114-117+121 .

    Other cited types(23)

Catalog

    Article views (1373) PDF downloads (751) Cited by(37)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return