• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Lu, Zhang Jianhao, Wang Ting, Wu Kaishun. A Fine-Grained Multi-Access Edge Computing Architecture for Cloud-Network Integration[J]. Journal of Computer Research and Development, 2021, 58(6): 1275-1290. DOI: 10.7544/issn1000-1239.2021.20201076
Citation: Wang Lu, Zhang Jianhao, Wang Ting, Wu Kaishun. A Fine-Grained Multi-Access Edge Computing Architecture for Cloud-Network Integration[J]. Journal of Computer Research and Development, 2021, 58(6): 1275-1290. DOI: 10.7544/issn1000-1239.2021.20201076

A Fine-Grained Multi-Access Edge Computing Architecture for Cloud-Network Integration

Funds: This work was supported by the National Natural Science Foundation of China (61872246, U2001207, 61872248), Guangdong Special Support Program, the Natural Science Foundation of Guangdong Province of China (2017A030312008), the Basic Research Program of Shenzhen (ZDSYS20190902092853047), the Science and Technology Innovative Program of Higher Education of Guangdong Province (2019KCXTD005), and the “Pearl River Talent Recruitment Program” of Guangdong Province (2019ZT08X603).
More Information
  • Published Date: May 31, 2021
  • Nowadays, a paradigm shift in mobile computing has been introduced by the ever-increasing heterogenous terminal devices, from the centralized mobile cloud towards the mobile edge. Multi-access edge computing (MEC) emerges as a promising ecosystem to support multi-service and multi-tenancy. It takes advantage of both mobile computing and wireless communication technologies for cloud-network integration. However, the physical hardware constraints of the terminal devices, along with the limited connection capacity of the wireless channel pose numerous challenges for cloud-network integration. The incapability of control over all the possible resources (e.g., computation, communication, cache) becomes the main hurdle of realizing delay-sensitive and real time services. To break this stalemate, this article investigates a software-defined fine-grained multi-access architecture, which takes full control of the computation and communication resources. We further investigate a Q-Learning based two-stage resource allocation strategy to better cater the heterogenous radio environments and various user requirements. We discuss the feasibility of the proposed architecture and demonstrate its effectiveness through extensive simulations.
  • Related Articles

    [1]Cai Huayang, Huang Xing, Liu Genggeng. Control Logic Routing for Continuous-Flow Microfluidic Biochips Using Deep Reinforcement Learning[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440034
    [2]Li Ke, Ma Sai, Dai Penglin, Ren Jing, Fan Pingzhi. Wireless Resource Allocation Algorithm Based on Multi-Objective Deep Reinforcement Learning for Vehicle-to-Vehicle Communications[J]. Journal of Computer Research and Development, 2024, 61(9): 2229-2245. DOI: 10.7544/issn1000-1239.202330895
    [3]Ge Zhenxing, Xiang Shuai, Tian Pinzhuo, Gao Yang. Solving GuanDan Poker Games with Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2024, 61(1): 145-155. DOI: 10.7544/issn1000-1239.202220697
    [4]Yang Mingchuan, Zhu Jinghua, Li Yuanjing, Xi Heran. Task Allocation Model Based on Deep Reinforcement Learning ConsideringPrivacy Protection[J]. Journal of Computer Research and Development, 2023, 60(11): 2650-2659. DOI: 10.7544/issn1000-1239.202220647
    [5]Zeng Junjie, Qin Long, Xu Haotian, Zhang Qi, Hu Yue, Yin Quanjun. Exploration Approaches in Deep Reinforcement Learning Based on Intrinsic Motivation: A Review[J]. Journal of Computer Research and Development, 2023, 60(10): 2359-2382. DOI: 10.7544/issn1000-1239.202220388
    [6]Zhang Jing, Wang Ziming, Ren Yonggong. A3C Deep Reinforcement Learning Model Compression and Knowledge Extraction[J]. Journal of Computer Research and Development, 2023, 60(6): 1373-1384. DOI: 10.7544/issn1000-1239.202111186
    [7]Zheng Bolong, Ming Lingfeng, Hu Qi, Fang Yixiang, Zheng Kai, Li Guohui. Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 329-341. DOI: 10.7544/issn1000-1239.20210905
    [8]Sun Penghao, Lan Julong, Shen Juan, Hu Yuxiang. Pinning Control-Based Routing Policy Generation Using Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1563-1572. DOI: 10.7544/issn1000-1239.2021.20200018
    [9]Lu Haifeng, Gu Chunhua, Luo Fei, Ding Weichao, Yang Ting, Zheng Shuai. Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. DOI: 10.7544/issn1000-1239.2020.20190291
    [10]Qi Faxin, Tong Xiangrong, Yu Lei. Agent Trust Boost via Reinforcement Learning DQN[J]. Journal of Computer Research and Development, 2020, 57(6): 1227-1238. DOI: 10.7544/issn1000-1239.2020.20190403
  • Cited by

    Periodical cited type(12)

    1. 刘叶楠,罗欢,袁进学. 基于微服务的研发运维一体化关键技术. 沈阳工业大学学报. 2024(02): 150-156 .
    2. 曹璐华. 基于EVM测量算法的移动终端接入控制技术. 吉林大学学报(信息科学版). 2024(05): 966-971 .
    3. 何春霞,陈刚. 多接入边缘计算(MEC)技术及业务发展策略. 科技与创新. 2023(01): 65-67 .
    4. 郝昊,杨树杰,张玮. 算网融合下时间连续的计算任务卸载机制. 计算机研究与发展. 2023(04): 735-749 . 本站查看
    5. 王军,张雄涛,赵兴利,钟正仪,朱晓敏. 分布式作战条件下陆战场智能信息系统设计. 指挥与控制学报. 2023(02): 192-203 .
    6. 韩子媛,王莉. 5G移动通信与物联网技术在电力系统中的应用. 数字技术与应用. 2022(02): 51-53 .
    7. 李睿,赵爽,汪贻生,闫华. 面向应急物流的边缘计算架构设计. 国防科技. 2022(02): 130-136 .
    8. 郑萍. 机载云平台系统中基于可靠性感知的卸载策略. 无线电工程. 2022(06): 947-952 .
    9. 钟运琴,朱月琴,焦守涛. 边缘大数据分析预测建模方法研究. 高技术通讯. 2022(10): 1067-1075 .
    10. 谢可,郭文静,祝文军,张楠,琚贇. 面向电力物联网海量终端接入技术研究综述. 电力信息与通信技术. 2021(09): 57-69 .
    11. 韩义波,王超,郭士加,刘盛加. 基于云边协同的物联网任务卸载策略建模与分析. 南阳理工学院学报. 2021(04): 31-41 .
    12. 孙淳晔,赵秋爽,庞亚南. 省级云网融合架构及系统演进发展策略研究. 信息通信技术. 2021(05): 58-63 .

    Other cited types(9)

Catalog

    Article views (783) PDF downloads (453) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return