• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chu Xiaokai, Fan Xinxin, Bi Jingping. Position-Aware Network Representation Learning via K-Step Mutual Information Estimation[J]. Journal of Computer Research and Development, 2021, 58(8): 1612-1623. DOI: 10.7544/issn1000-1239.2021.20210321
Citation: Chu Xiaokai, Fan Xinxin, Bi Jingping. Position-Aware Network Representation Learning via K-Step Mutual Information Estimation[J]. Journal of Computer Research and Development, 2021, 58(8): 1612-1623. DOI: 10.7544/issn1000-1239.2021.20210321

Position-Aware Network Representation Learning via K-Step Mutual Information Estimation

Funds: This work was supported by the National Natural Science Foundation of China (62077044,61702470, 62002343).
More Information
  • Published Date: July 31, 2021
  • As the network data grows rapidly and persistently, also affiliated with more sophisticated applications, the network representation learning, which aims to learn the high-quality embedding vectors, has become the popular methodology to perform various network analysis tasks. However, the existing representation learning methods have little power in capturing the positional/locational information of the node. To handle the problem, this paper proposes a novel position-aware network representation learning model by figuring out center-rings mutual information estimation to plant the node’s global position into the embedding, PMI for short. The proposed PMI encourages each node to respectively perceive its K-step neighbors via the maximization of mutual information between this node and its step-specific neighbors. The extensive experiments using four real-world datasets on several representative tasks demonstrate that PMI can learn high-quality embeddings and achieve the best performance compared with other state-of-the-art models. Furthermore, a novel neighbor alignment experiment is additionally provided to verify that the learned embedding can identify its K-step neighbors and capture the positional information indeed to generate appropriate embeddings for various downstream tasks.
  • Related Articles

    [1]Guo Zhengshan, Zuo Jie, Duan Lei, Li Renhao, He Chengxin, Xiao Yingjie, Wang Peiyan. A Generative Adversarial Negative Sampling Method for Knowledge Hypergraph Link Prediction[J]. Journal of Computer Research and Development, 2022, 59(8): 1742-1756. DOI: 10.7544/issn1000-1239.20220074
    [2]Wang Peiyan, Duan Lei, Guo Zhengshan, Jiang Weipeng, Zhang Yidan. Knowledge Hypergraph Link Prediction Model Based on Tensor Decomposition[J]. Journal of Computer Research and Development, 2021, 58(8): 1599-1611. DOI: 10.7544/issn1000-1239.2021.20210315
    [3]Zhuang Liansheng, Lü Yang, Yang Jian, Li Houqiang. Long Term Recurrent Neural Network with State-Frequency Memory[J]. Journal of Computer Research and Development, 2019, 56(12): 2641-2648. DOI: 10.7544/issn1000-1239.2019.20180474
    [4]Luo Sheng, Miao Duoqian, Zhang Zhifei, Zhang Yuanjian, Hu Shengdan. A Link Prediction Model Based on Hierarchical Information Granular Representation for Attributed Graphs[J]. Journal of Computer Research and Development, 2019, 56(3): 623-634. DOI: 10.7544/issn1000-1239.2019.20170961
    [5]Chen Dehua, Yin Suna, Le Jiajin, Wang Mei, Pan Qiao, Zhu Lifeng. A Link Prediction Model for Clinical Temporal Knowledge Graph[J]. Journal of Computer Research and Development, 2017, 54(12): 2687-2697. DOI: 10.7544/issn1000-1239.2017.20170640
    [6]Wang Xin, Wang Ying, Zuo Wanli. Exploring Interactional Opinions and Status Theory for Predicting Links in Signed Network[J]. Journal of Computer Research and Development, 2016, 53(4): 764-775. DOI: 10.7544/issn1000-1239.2016.20151079
    [7]Zhao Zeya, Jia Yantao, Wang Yuanzhuo, Jin Xiaolong, Cheng Xueqi. Temporal Link Prediction Based on Dynamic Heterogeneous Information Network[J]. Journal of Computer Research and Development, 2015, 52(8): 1735-1741. DOI: 10.7544/issn1000-1239.2015.20150183
    [8]Liu Ye, Zhu Weiheng, Pan Yan, Yin Jian. Multiple Sources Fusion for Link Prediction via Low-Rank and Sparse Matrix Decomposition[J]. Journal of Computer Research and Development, 2015, 52(2): 423-436. DOI: 10.7544/issn1000-1239.2015.20140221
    [9]Zhou Donghao, Han Wenbao, Wang Yongjun. A Fine-Grained Information Diffusion Model Based on Node Attributes and Content Features[J]. Journal of Computer Research and Development, 2015, 52(1): 156-166. DOI: 10.7544/issn1000-1239.2015.20130915
    [10]Huang Jianbin, Sun Heli. Focused Web Entity Search Using the Linked-Path Prediction Model[J]. Journal of Computer Research and Development, 2010, 47(12).

Catalog

    Article views (503) PDF downloads (221) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return