• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chu Xiaokai, Fan Xinxin, Bi Jingping. Position-Aware Network Representation Learning via K-Step Mutual Information Estimation[J]. Journal of Computer Research and Development, 2021, 58(8): 1612-1623. DOI: 10.7544/issn1000-1239.2021.20210321
Citation: Chu Xiaokai, Fan Xinxin, Bi Jingping. Position-Aware Network Representation Learning via K-Step Mutual Information Estimation[J]. Journal of Computer Research and Development, 2021, 58(8): 1612-1623. DOI: 10.7544/issn1000-1239.2021.20210321

Position-Aware Network Representation Learning via K-Step Mutual Information Estimation

Funds: This work was supported by the National Natural Science Foundation of China (62077044,61702470, 62002343).
More Information
  • Published Date: July 31, 2021
  • As the network data grows rapidly and persistently, also affiliated with more sophisticated applications, the network representation learning, which aims to learn the high-quality embedding vectors, has become the popular methodology to perform various network analysis tasks. However, the existing representation learning methods have little power in capturing the positional/locational information of the node. To handle the problem, this paper proposes a novel position-aware network representation learning model by figuring out center-rings mutual information estimation to plant the node’s global position into the embedding, PMI for short. The proposed PMI encourages each node to respectively perceive its K-step neighbors via the maximization of mutual information between this node and its step-specific neighbors. The extensive experiments using four real-world datasets on several representative tasks demonstrate that PMI can learn high-quality embeddings and achieve the best performance compared with other state-of-the-art models. Furthermore, a novel neighbor alignment experiment is additionally provided to verify that the learned embedding can identify its K-step neighbors and capture the positional information indeed to generate appropriate embeddings for various downstream tasks.
  • Cited by

    Periodical cited type(14)

    1. 胡磊,甘胜丰. 基于YOLO-CIRCLE算法的圆形钢卷检测. 湖北第二师范学院学报. 2023(02): 18-25 .
    2. 张晓辉,何金海,兰鹏燕,徐圣斯. 局部几何与全局结构联合感知的三维形状分类方法. 计算机应用研究. 2023(12): 3828-3833 .
    3. 张晓媛,于洋,王新蕊. 三维图像虚拟视点生成优化研究仿真. 计算机仿真. 2022(03): 205-209 .
    4. 张艳丽,牛任恺,张鑫磊,孙志杰,王利赛. 基于序列标注的业务异常工单判别方法研究. 电子设计工程. 2022(07): 139-143 .
    5. 吴康楠,姜洪庆. 面向绿色化改造的历史民居建筑三维重构方法. 工业加热. 2022(05): 27-30+40 .
    6. 连远锋,裴守爽,胡伟. 融合NFFD与图卷积的单视图三维物体重建. 光学精密工程. 2022(10): 1189-1202 .
    7. 李远松,丁津津,徐晨,高博,汤汉松,单荣荣. 基于智能感知与深度学习的智能变电站设备状态检测方法. 电气工程学报. 2022(02): 208-214 .
    8. 郭艺辉,陆寄远,黄承慧,钟雪灵,林淑金,苏卓,罗笑南. 基于混合频谱信号编码的网格纹理平滑. 计算机学报. 2021(02): 318-333 .
    9. 谢昊洋,钟跃崎. 基于图卷积网络的非参数化三维人体重建. 毛纺科技. 2021(04): 18-24 .
    10. 李海生,武玉娟,郑艳萍,吴晓群,蔡强,杜军平. 基于深度学习的三维数据分析理解方法研究综述. 计算机学报. 2020(01): 41-63 .
    11. 曲海成,田小容,刘腊梅,石翠萍. 多尺度显著区域检测图像压缩. 中国图象图形学报. 2020(01): 31-42 .
    12. 杨晓文,尹洪红,韩燮,刘佳鸣. 基于蚁狮优化的极限学习机的网格分割方法. 激光与光电子学进展. 2020(04): 163-169 .
    13. 崔金栋,陈思远. 融媒体信息推荐模型构建与信息推荐方法研究. 情报科学. 2020(07): 52-58 .
    14. 周燕,曾凡智,吴臣,罗粤,刘紫琴. 基于深度学习的三维形状特征提取方法. 计算机科学. 2019(09): 47-58 .

    Other cited types(20)

Catalog

    Article views (506) PDF downloads (221) Cited by(34)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return