• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Xiang, Zheng Yuzhen, Su Xing, Yu Jintao, Xu Weixia, Wu Junjie. A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology[J]. Journal of Computer Research and Development, 2021, 58(9): 1875-1896. DOI: 10.7544/issn1000-1239.2021.20210368
Citation: Fu Xiang, Zheng Yuzhen, Su Xing, Yu Jintao, Xu Weixia, Wu Junjie. A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology[J]. Journal of Computer Research and Development, 2021, 58(9): 1875-1896. DOI: 10.7544/issn1000-1239.2021.20210368

A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology

Funds: This work was supported by the National Natural Science Foundation of China (61902410) and the Autonomous Project of the State Key Laboratory of High Performance Computing (202001-01, 202101-24).
More Information
  • Published Date: August 31, 2021
  • Quantum computers promise to accelerate solving problems that are intractable by classical computers, such as prime factorization and quantum chemistry simulation. It has been demonstrated that a single quantum system can integrate more than fifty noisy solid-state qubits and surpass contemporary classical computers in specific computing tasks, marking the arrival of the noisy intermediate-scale quantum (NISQ) era. As more and more qubits can be integrated into a single system, how to integrate qubits with control hardware, software development environment, and classical computing resources to obtain a complete and usable quantum computing system is a problem that needs to be further clarified. By comparing both the control and execution of quantum and classical computing, this paper proposes a heterogeneous quantum-classical system targeting the NISQ technology. Taking a typical NISQ algorithm (the iterative phase estimation algorithm) as an example, this paper introduces the whole process of executing a quantum algorithm and related software and hardware, including the high-level programming language, compiler, quantum software and hardware interface, and control microarchitecture. On top of it, this paper discusses the challenges confronting each layer in the NISQ era. This paper aims to provide a general introduction of quantum computing systems to readers (especially beginners of quantum computing) from an engineering perspective, hoping to promote people’s understanding of the overall architecture of quantum computing systems in the NISQ era and stimulate more related research.
  • Related Articles

    [1]Yin Yuyu, Wu Guangqiang, Li Youhuizi, Wang Xinyu, Gao Honghao. A Machine Unlearning Method via Feature Constraint and Adaptive Loss Balance[J]. Journal of Computer Research and Development, 2024, 61(10): 2649-2661. DOI: 10.7544/issn1000-1239.202440476
    [2]Fan Ye, Peng Shujuan, Liu Xin, Cui Zhen, Wang Nannan. Cross-Modal Anomaly Detection via Hierarchical Deep Networks and Bi-Quintuple Loss[J]. Journal of Computer Research and Development, 2022, 59(12): 2770-2780. DOI: 10.7544/issn1000-1239.20210729
    [3]Zhang Qiang, Yang Jibin, Zhang Xiongwei, Cao Tieyong, Zheng Changyan. CS-Softmax: A Cosine Similarity-Based Softmax Loss Function[J]. Journal of Computer Research and Development, 2022, 59(4): 936-949. DOI: 10.7544/issn1000-1239.20200879
    [4]He Xianmin, Li Maoxi, He Yanqing. Siamese BERT-Networks Based Classification Mapping of Scientific and Technological Literature[J]. Journal of Computer Research and Development, 2021, 58(8): 1751-1760. DOI: 10.7544/issn1000-1239.2021.20210323
    [5]Wang Jina, Chen Junhua, Gao Jianhua. ECC Multi-Label Code Smell Detection Method Based on Ranking Loss[J]. Journal of Computer Research and Development, 2021, 58(1): 178-188. DOI: 10.7544/issn1000-1239.2021.20190836
    [6]Song Chuanming, He Xing, Min Xin, Wang Xianghai. Index Map Prediction by 2-Neighbor Joint Transition Probability in Palette Coding[J]. Journal of Computer Research and Development, 2018, 55(11): 2557-2568. DOI: 10.7544/issn1000-1239.2018.20170247
    [7]Zhou Yu, He Jianjun, Gu Hong, Zhang Junxing. A Fast Partial Label Learning Algorithm Based on Max-loss Function[J]. Journal of Computer Research and Development, 2016, 53(5): 1053-1062. DOI: 10.7544/issn1000-1239.2016.20150267
    [8]Zhu Yelei, Wang Yujun, Luo Qiang, and Tao Qing. A Soft-Thresholding Coordinate Descent Algorithm for Solving Truncated Hinge Loss[J]. Journal of Computer Research and Development, 2013, 50(11): 2295-2303.
    [9]Kong Kang, Tao Qing, Wang Qunshan, Chu Dejun. A Sub-Gadient Based Solver for L1-Rgularization+Hinge-Loss Problem[J]. Journal of Computer Research and Development, 2012, 49(7): 1494-1499.
    [10]Weng Dawei, Yin Yilong, Yang Gongping, and Qi Xiuyan. Singular Point Extraction from Fingerprint Based on Gaussian-Hermite Moment and Improved Poincare Index[J]. Journal of Computer Research and Development, 2008, 45(11): 1974-1984.
  • Cited by

    Periodical cited type(6)

    1. 唐续豪,刘发贵,王彬,李超,蒋俊,唐泉,陈维明,何凤文. 跨云环境下任务调度综述. 计算机研究与发展. 2023(06): 1262-1275 . 本站查看
    2. 仝青,郭云飞,霍树民,王亚文. 面向主动防御的多样性研究进展. 信息安全学报. 2022(03): 119-133 .
    3. 秦轶翚,马涛. 对等网络环境下多目标任务容错调度方法研究. 计算机仿真. 2021(08): 352-355 .
    4. 刘林东. 一种改进的wRR独立任务调度算法研究. 广东第二师范学院学报. 2020(03): 89-93 .
    5. 郑子秋,张卫东,刘宁,付秋璇,尹健康,贺红梅. 信息安全技术在企业ERP系统中的应用. 科技创新与应用. 2019(18): 174-176 .
    6. 徐俊,项倩红,肖刚. 基于改进混合蛙跳算法的云工作流负载均衡调度优化. 计算机科学. 2019(11): 315-322 .

    Other cited types(9)

Catalog

    Article views (554) PDF downloads (370) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return