• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Kunjia, Li Xinyi, Tang Jiuyang, Zhao Xiang. Interpretable Deep Knowledge Tracing[J]. Journal of Computer Research and Development, 2021, 58(12): 2618-2629. DOI: 10.7544/issn1000-1239.2021.20211021
Citation: Liu Kunjia, Li Xinyi, Tang Jiuyang, Zhao Xiang. Interpretable Deep Knowledge Tracing[J]. Journal of Computer Research and Development, 2021, 58(12): 2618-2629. DOI: 10.7544/issn1000-1239.2021.20211021

Interpretable Deep Knowledge Tracing

Funds: This work was supported by the National Key Research and Development Program of China (2020AAA0108800), the National Natural Science Foundation of China (61872446, 71971212, 62002373), and the Postgraduate Scientific Research Innovation Project of Hunan Province (CX20200067).
More Information
  • Published Date: November 30, 2021
  • The task of knowledge tracing involves tracking users’ cognitive states by modeling their exercise-answering sequence, predicting their performance over time, and achieving an intelligent assessment of the users’ knowledge. Current works mainly model the skills related to the exercises, while ignoring the rich information contained in the contexts of exercises. Moreover, the current deep learning-based methods are agnostic, which undermines the explainability of the model. In this paper, we propose an interpretable deep knowledge tracking (IDKT) framework. First, we alleviate the data sparsity problem by using the contextual information of the exercises and skills to obtain more representative exercise and skill representations. Then the hidden knowledge states are fused with the aforementioned embeddings to learn a personalized attention, which is later used to aggregate neighbor embeddings in the exercise-skill graph. Finally, given a prediction result, an inference path is selected as the explanation based on the personalized attention. Compared with typical existing methods, IDKT exhibits its superiority by not only achieving the best prediction performance, but also providing an explanation at the inference path level for the prediction results.
  • Related Articles

    [1]Lu Sidi, He Yuankai, Shi Weisong. Vehicle Computing: An Emerging Computing Paradigm for the Autonomous Driving Era[J]. Journal of Computer Research and Development, 2025, 62(1): 2-21. DOI: 10.7544/issn1000-1239.202440538
    [2]Zheng Junhao, Lin Chenhao, Zhao Zhengyu, Jia Ziyi, Wu Libing, Shen Chao. Towards Transferable and Stealthy Attacks Against Object Detection in Autonomous Driving Systems[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440097
    [3]Dai Jiarun, Li Zhongrui, Zhang Wanqi, Zhang Yuan, Yang Min. Simulation-Based Fuzzing for Autonomous Driving Systems: Landscapes, Challenges and Prospects[J]. Journal of Computer Research and Development, 2023, 60(7): 1433-1447. DOI: 10.7544/issn1000-1239.202330156
    [6]Wu Hao, Wang Hao, Su Xing, Li Minghao, Xu Fengyuan, Zhong Sheng. Security Testing of Visual Perception Module in Autonomous Driving System[J]. Journal of Computer Research and Development, 2022, 59(5): 1133-1147. DOI: 10.7544/issn1000-1239.20211139
    [7]Hou Huiying, Lian Huanhuan, Zhao Yunlei. An Efficient and Traceable Anonymous VANET Communication Scheme for Autonomous Driving[J]. Journal of Computer Research and Development, 2022, 59(4): 894-906. DOI: 10.7544/issn1000-1239.20200915
    [8]Zhang Yanyong, Zhang Sha, Zhang Yu, Ji Jianmin, Duan Yifan, Huang Yitong, Peng Jie, Zhang Yuxiang. Multi-Modality Fusion Perception and Computing in Autonomous Driving[J]. Journal of Computer Research and Development, 2020, 57(9): 1781-1799. DOI: 10.7544/issn1000-1239.2020.20200255
    [9]Lai Chengzhe, Zhang Min, Zheng Dong. A Secure and Efficient Map Update Scheme for Autonomous Vehicles[J]. Journal of Computer Research and Development, 2019, 56(10): 2277-2286. DOI: 10.7544/issn1000-1239.2019.20190314
    [10]Wang Juanjuan, Qiao Ying, Wang Hongan. Graph-Based Auto-Driving Reasoning Task Scheduling[J]. Journal of Computer Research and Development, 2017, 54(8): 1693-1702. DOI: 10.7544/issn1000-1239.2017.20170212
  • Cited by

    Periodical cited type(4)

    1. 印婵,祝义,王金永,陈小颖,郝国生. 面向CPS时空规则验证制导的安全强化学习. 计算机科学与探索. 2025(02): 513-527 .
    2. 蒋荣军. 基于Concenter-Net神经网络的无人驾驶汽车实时规划方法. 数学的实践与认识. 2023(05): 164-171 .
    3. 刘泽润,刘超. 可持续建成环境研究的机器学习应用进展与展望. 风景园林. 2023(07): 51-59 .
    4. 孙聪,曾荟铭,宋焕东,王运柏,张宗旭,马建峰. 基于机器学习的无人机传感器攻击在线检测和恢复方法. 计算机研究与发展. 2023(10): 2291-2303 . 本站查看

    Other cited types(15)

Catalog

    Article views (882) PDF downloads (546) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return