• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yu Xiao, Liu Hui, Lin Yuxiu, Zhang Caiming. Consensus Guided Auto-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1496-1508. DOI: 10.7544/issn1000-1239.20210126
Citation: Yu Xiao, Liu Hui, Lin Yuxiu, Zhang Caiming. Consensus Guided Auto-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1496-1508. DOI: 10.7544/issn1000-1239.20210126

Consensus Guided Auto-Weighted Multi-View Clustering

Funds: This work was supported by the National Natural Science Foundation of China (62072274) and Shandong Provincial Transfer and Transformation Project of Scientific and Technological Achievements (2021LYXZ021).
More Information
  • Published Date: June 30, 2022
  • As it becomes increasingly easier to obtain multi-modal or multi-view data, multi-view clustering has gained much more attention recently. However, many methods learn the affinity matrix from the original data and may lead to unsatisfying results because of the noise in the raw dataset. Besides, some methods neglect the diversity of roles played by different views and take them equally. In this paper, we propose a novel Markov chain algorithm named consensus guided auto-weighted multi-view clustering (CAMC) to tackle these problems. A transition probability matrix is constructed for each view to learn the affinity matrix indirectly to reduce the effects of redundancies and noise in the original data. The consensus transition probability matrix is obtained in an auto-weighted way, in which the optimal weight for each view is gained automatically. Besides, a constrained Laplacian rank is utilized on the consensus transition probability to ensure that the number of the connected components in the Laplacian graph is exactly equal to that of the clusters. Moreover, an optimization strategy based on alternating direction method of multiplier (ADMM) is proposed to solve the problem. The effectiveness of the proposed algorithm is verified on a toy dataset. Extensive experiments on seven real-world datasets with different types show that CAMC outperforms the other eight benchmark algorithms in terms of clustering.
  • Related Articles

    [1]Qi Lei, Ren Zihao, Liu Junxi, Geng Xin. Person Re-identification Method Based on Hybrid Real-Synthetic Data[J]. Journal of Computer Research and Development, 2025, 62(2): 418-431. DOI: 10.7544/issn1000-1239.202330718
    [2]Gao Yujia, Wang Pengfei, Liu Liang, Ma Huadong. Personalized Federated Learning Method Based on Attention-Enhanced Meta-Learning Network[J]. Journal of Computer Research and Development, 2024, 61(1): 196-208. DOI: 10.7544/issn1000-1239.202220922
    [3]Zhang Wanli, Chen Yue, Yang Kuiwu, Zhang Tian, Hu Xuexian. An Adversarial Example Generation Method for Locally Occluded Face Recognition[J]. Journal of Computer Research and Development, 2023, 60(9): 2067-2079. DOI: 10.7544/issn1000-1239.202220474
    [4]Chen Liwen, Ye Feng, Huang Tianqiang, Huang Liqing, Weng Bin, Xu Chao, Hu Jie. An Unsupervised Person Re-Identification Method Based on Intra-/Inter-Camera Merger[J]. Journal of Computer Research and Development, 2023, 60(2): 415-425. DOI: 10.7544/issn1000-1239.202110732
    [5]Chu Zhen, Mi Qing, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Part-Level Occlusion-Aware Human Pose Estimation[J]. Journal of Computer Research and Development, 2022, 59(12): 2760-2769. DOI: 10.7544/issn1000-1239.20210723
    [6]Hu Yu, Chen Xiaobo, Liang Jun, Chen Ling, Liang Shurong. Vehicle Re-Identification Method Based on Part Features and Multi-Attention Fusion[J]. Journal of Computer Research and Development, 2022, 59(11): 2497-2506. DOI: 10.7544/issn1000-1239.20210599
    [7]Lu Ping, Dong Husheng, Zhong Shan, Gong Shengrong. Person Re-identification by Cross-View Discriminative Dictionary Learning with Metric Embedding[J]. Journal of Computer Research and Development, 2019, 56(11): 2424-2437. DOI: 10.7544/issn1000-1239.2019.20180740
    [8]Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
    [9]Ding Zongyuan, Wang Hongyuan, Chen Fuhua, Ni Tongguang. Person Re-Identification Based on Distance Centralization and Projection Vectors Learning[J]. Journal of Computer Research and Development, 2017, 54(8): 1785-1794. DOI: 10.7544/issn1000-1239.2017.20170014
    [10]Chen Puqiang, Guo Lijun, Zhang Rong, Zhao Jieyu. Patch Matching with Global Spatial Constraints for Person Re-Identification[J]. Journal of Computer Research and Development, 2015, 52(3): 596-605. DOI: 10.7544/issn1000-1239.2015.20131481
  • Cited by

    Periodical cited type(5)

    1. 傅冰飞,陈同林,许枫,朱麟,李斌,薛向阳. 基于背景-前景组成式建模的电路板异常检测. 计算机研究与发展. 2025(01): 144-159 . 本站查看
    2. 孙留存,于龙,刘斌. 基于人工智能的电力巡检机器人网络故障自动化检测系统. 自动化与仪表. 2025(02): 63-65+72 .
    3. 薛泼. 发电厂智能化视频监控终端网络入侵检测研究. 电气技术与经济. 2025(02): 341-344 .
    4. 廖吟秋,王亚春. 基于cusum算法的电商直播信号异常波动特征建模. 自动化与仪器仪表. 2023(06): 54-57+62 .
    5. 杨亚琦,李博雄,杨东霞,刘燕. 基于信息熵的异常数据判别方法. 科学技术创新. 2023(24): 194-199 .

    Other cited types(7)

Catalog

    Article views (181) PDF downloads (121) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return