• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ding Wenlong, Wang Chengning, Tong Wei. Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction[J]. Journal of Computer Research and Development, 2022, 59(3): 533-552. DOI: 10.7544/issn1000-1239.20210580
Citation: Ding Wenlong, Wang Chengning, Tong Wei. Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction[J]. Journal of Computer Research and Development, 2022, 59(3): 533-552. DOI: 10.7544/issn1000-1239.20210580

Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction

Funds: This work was supported by the National Natural Science Foundation of China (61832007, 61821003), the Fundamental Research Funds for the Central Universities (2019kfyXMBZ037), and the Zhejiang Lab Open Fund (2020AA3AB07).
More Information
  • Published Date: February 28, 2022
  • Matrix-vector multiplication (MVM) is a key computing kernel for solving high-performance scientific systems. Recent work by Feinberg et al has proposed a method of deploying high-precision operands on memristive crossbars, showing its great potential on accelerating scientific MVM. Since different types of scientific computing applications have different precision requirements, providing appropriate computation methods for specific applications is an effective way to further reduce energy consumption. This paper proposes a system with mantissa compaction and alignment optimization strategies. Under the premise of implementing the basic function of high-precision floating-point memristive MVM, the proposed system is also possible to properly select the compaction bits of the floating-point mantissa according to application precision requirements. By neglecting the activation of the low-bit crossbars with less mantissa significance and the redundant alignment crossbars when performing computation, the energy consumption of computational crossbars and peripheral circuits are significantly reduced. The evaluation result shows that when the crossbar-based in-memory solutions of sparse linear systems have average solving residual of 0~10\+\{-3\} order of magnitude compared with the software baseline, the average energy consumption of computational crossbars and peripheral analog-to-digital converters are reduced by 5%~65% and 30%~55% compared with the existing work without optimization, respectively.
  • Cited by

    Periodical cited type(1)

    1. 陈亚颐,尹权,再开日亚·安尼娃尔,张乐. 跨系统的流动性多源异构数据整合算法仿真. 计算机仿真. 2025(01): 410-414 .

    Other cited types(2)

Catalog

    Article views (310) PDF downloads (152) Cited by(3)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return