Citation: | Li Gengsong, Liu Yi, Zheng Qibin, Li Xiang, Liu Kun, Qin Wei, Wang Qiang, Yang Changhong. Algorithm Selection Method Based on Multi-Objective Hybrid Ant Lion Optimizer[J]. Journal of Computer Research and Development, 2023, 60(7): 1533-1550. DOI: 10.7544/issn1000-1239.202220769 |
Algorithm selection refers to selecting an algorithm that satisfies the requirements for a given problem from feasible algorithms, and algorithm selection based on meta-learning is a widely used method, in which the key components are meta-features and meta-learners. However, existing research is difficult to make full use of the complementarity of meta-features and the diversity of meta-learners, which are not conducive to further improving the method performance. To solve the above problems, a selective ensemble algorithm selection method based on multi-objective hybrid ant lion optimizer (SAMO) is proposed. It designs an algorithm selection model, which sets the accuracy and diversity of the ensemble meta-learners as the optimization objectives, introduces meta-feature selection and selective ensemble, and chooses meta-features and heterogeneous meta-learners simultaneously to construct ensemble meta-learners; it proposes a multi-objective hybrid ant lion optimizer to optimize the model, which uses discrete code to select meta-feature subsets and constructs ensemble meta-learners by continuous code, and applies the enhanced walk strategy and the preference elite selection mechanism to improve the optimization performance. We utilize 260 datasets, 150 meta-features, and 9 candidate algorithms to construct classification algorithm selection problems and conduct test experiments, and the parameter sensitivity of the method is analyzed, the multi-objective hybrid ant lion optimizer is compared with four evolutionary algorithms, 8 comparative methods are compared with the proposed method, and the results verify the effectiveness and superiority of the method.
[1] |
Adam S P, Alexandropoulos S-A N, Pardalos P M, et al. No free lunch theorem: A review[M]//Approximation and Optimization. Cham, Switzerland: Springer, 2019: 57−82
|
[2] |
Kerschke P, Hoos H H, Neumann F, et al. Automated algorithm selection: Survey and perspectives[J]. Evolutionary Computation, 2019, 27(1): 3−45 doi: 10.1162/evco_a_00242
|
[3] |
Brazdil P, Giraud-Carrier C. Metalearning and algorithm selection: Progress, state of the art and introduction to the 2018 special issue[J]. Machine Learning, 2018, 107(1): 1−14 doi: 10.1007/s10994-017-5692-y
|
[4] |
Yang Chengrun, Akimoto Y, Kim D W, et al. OBOE: Collaborative filtering for AutoML model selection[C]//Proc of the 25th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1173−1183
|
[5] |
Dias L V, Miranda P B C, Nascimento A C A, et al. ImageDataset2Vec: An image dataset embedding for algorithm selection[J]. Expert Systems with Applications, 2021, 180: 115053 doi: 10.1016/j.eswa.2021.115053
|
[6] |
Shahoud S, Winter M, Khalloof H, et al. An extended meta learning approach for automating model selection in big data environments using microservice and container virtualizationz technologies[J]. Internet of Things, 2021, 16: 100432 doi: 10.1016/j.iot.2021.100432
|
[7] |
Aguiar G J, Santana E J, De Carvalho A C P F L, et al. Using meta-learning for multi-target regression[J]. Information Sciences, 2022, 584: 665−684 doi: 10.1016/j.ins.2021.11.003
|
[8] |
Arjmand A, Samizadeh R, Dehghani Saryazdi M. Meta-learning in multivariate load demand forecasting with exogenous meta-features[J]. Energy Efficiency, 2020, 13(5): 871−887 doi: 10.1007/s12053-020-09851-x
|
[9] |
Li Li, Wang Yong, Xu Ying, et al. Meta-learning based industrial intelligence of feature nearest algorithm selection framework for classification problems[J]. Journal of Manufacturing Systems, 2022, 62: 767−776 doi: 10.1016/j.jmsy.2021.03.007
|
[10] |
Chalé M, Bastian N D, Weir J. Algorithm selection framework for cyber attack detection[C]//Proc of the 2nd ACM Workshop on Wireless Security and Machine Learning. New York: ACM, 2020: 37−42
|
[11] |
Mu Tianyu, Wang Hongzhi, Zheng Shenghe, et al. Assassin: An automatic classification system based on algorithm selection[J]. Proceedings of the VLDB Endowment, 2021, 14(12): 2751−2754 doi: 10.14778/3476311.3476336
|
[12] |
Garcia L P F, Lorena A C, De Souto M C P, et al. Classifier recommendation using data complexity measures[C]//Proc of the 24th Int Conf on Pattern Recognition. Piscataway, NJ: IEEE, 2018: 874−879
|
[13] |
Aguiar G J, Mantovani R G, Mastelini S M, et al. A meta-learning approach for selecting image segmentation algorithm[J]. Pattern Recognition Letters, 2019, 128: 480−487 doi: 10.1016/j.patrec.2019.10.018
|
[14] |
Aduviri R, Matos D, Villanueva E. Feature selection algorithm recommendation for gene expression data through gradient boosting and neural network metamodels[C]//Proc of the 12th IEEE Int Conf on Bioinformatics and Biomedicine. Los Alamitos, CA: IEEE Computer Society, 2018: 2726−2728
|
[15] |
孟军,张晶,姜丁菱,等. 结合近邻传播聚类的选择性集成分类方法[J]. 计算机研究与发展,2018,55(5):986−993 doi: 10.7544/issn1000-1239.2018.20170077
Meng Jun, Zhang Jing, Jiang Dingling, et al. Selective ensemble classification integrated with affinity propagation clustering[J]. Journal of Computer Research and Development, 2018, 55(5): 986−993 (in Chinese) doi: 10.7544/issn1000-1239.2018.20170077
|
[16] |
Jan Z, Munos J C, Ali A. A novel method for creating an optimized ensemble classifier by introducing cluster size reduction and diversity[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(7): 3072−3081
|
[17] |
Xu Yuhong, Yu Zhiwen, Cao Wenming, et al. Adaptive classifier ensemble method based on spatial perception for high-dimensional data classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(7): 2847−2862 doi: 10.1109/TKDE.2019.2961076
|
[18] |
Mohammed A M, Onieva E, Woźniak M, et al. An analysis of heuristic metrics for classifier ensemble pruning based on ordered aggregation[J]. Pattern Recognition, 2022, 124: 108493 doi: 10.1016/j.patcog.2021.108493
|
[19] |
胡毅,瞿博阳,梁静,等. 进化集成学习算法综述[J]. 智能科学与技术学报,2021,3(1):18−33 doi: 10.11959/j.issn.2096-6652.202103
Hu Yi, Qu Boyang, Liang Jing, et al. A survey on evolutionary ensemble learning algorithm[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 18−33 (in Chinese) doi: 10.11959/j.issn.2096-6652.202103
|
[20] |
刘艺,刁兴春,曹建军,等. 基于集成分类的高维数据实体分辨[J]. 计算机应用研究,2018,35(3):689−693
Liu Yi, Diao Xingchun, Cao Jianjun, et al. High-dimensional data entity resolution based on ensemble classifying[J]. Application Research of Computers, 2018, 35(3): 689−693 (in Chinese)
|
[21] |
Qasem A, Sheikh Abdullah S N H, Sahran S, et al. An improved ensemble pruning for mammogram classification using modified bees algorithm[J]. Neural Computing and Applications, 2022, 34: 10093−10116 doi: 10.1007/s00521-022-06995-y
|
[22] |
Zhu Xuhui, Ni Zhiwei, Ni Liping, et al. Ensemble pruning of ELM via migratory binary glowworm swarm optimization and margin distance minimization[J]. Neural Processing Letters, 2020, 52(3): 2043−2067 doi: 10.1007/s11063-020-10336-2
|
[23] |
Mirjalili S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(C): 80−98
|
[24] |
Niu Guoqiang, Li Xiaoyong, Wan Xin, et al. Dynamic optimization of wastewater treatment process based on novel multi-objective ant lion optimization and deep learning algorithm[J]. Journal of Cleaner Production, 2022, 345: 131140 doi: 10.1016/j.jclepro.2022.131140
|
[25] |
Abualigah L, Shehab M, Alshinwan M, et al. Ant lion optimizer: A comprehensive survey of its variants and applications[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1397−1416 doi: 10.1007/s11831-020-09420-6
|
[26] |
Liu Yi, Qin Wei, Zhang Jinhui, et al. Multi-objective ant lion optimizer based on time weight[J]. IEICE Transactions on Information and Systems, 2021, E104.D(6): 901−904 doi: 10.1587/transinf.2021EDL8009
|
[27] |
Khan I, Zhang Xianchao, Mobashar R, et al. A literature survey and empirical study of meta-learning for classifier selection[J]. IEEE Access, 2020, 8: 10262−10281 doi: 10.1109/ACCESS.2020.2964726
|
[28] |
曾子林,张宏军,张睿,等. 基于元学习思想的算法选择问题综述[J]. 控制与决策,2014,29(6):961−968 doi: 10.13195/j.kzyjc.2013.1297
Zeng Zilin, Zhang Hongjun, Zhang Rui, et al. Summary of algorithm selection problem based on meta-learning[J]. Control and Decision, 2014, 29(6): 961−968 (in Chinese) doi: 10.13195/j.kzyjc.2013.1297
|
[29] |
Rivolli A, Garcia L P F, Soares C, et al. Meta-features for meta-learning[J]. Knowledge-Based Systems, 2022, 240: 108101 doi: 10.1016/j.knosys.2021.108101
|
[30] |
Lorena A C, Garcia L P F, Lehmann J, et al. How complex is your classification problem: A survey on measuring classification complexity[J]. ACM Computing Surveys, 2019, 52(5): 1−34
|
[31] |
刁兴春,刘艺,曹建军,等. 多目标蚁群优化研究综述[J]. 计算机科学,2017,44(10):7−13,25 doi: 10.11896/j.issn.1002-137X.2017.10.002
Diao Xingchun, Liu Yi, Cao Jianjun, et al. Reviews of multiobjective ant colony optimization[J]. Computer Science, 2017, 44(10): 7−13,25 (in Chinese) doi: 10.11896/j.issn.1002-137X.2017.10.002
|
[32] |
Dua D, Graff C. UCI machine learning repository[EB/OL]. 2017[2022-03-19].https://archive.ics.uci.edu/ml/index.php
|
[33] |
Alcalá-Fdez J, Fernández A, Luengo J, et al. Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework[J]. Journal of Multiple-Valued Logic & Soft Computing, 2011, 17: 255−287
|
[34] |
Kooperberg C. StatLib: An archive for statistical software, datasets, and information[J]. The American Statistician, 1997, 51(1): 98−98 doi: 10.2307/2684710
|
[35] |
Vanschoren J, Van Rijn J N, Bischl B, et al. OpenML: Networked science in machine learning[J]. ACM SIGKDD Explorations Newsletter, 2014, 15(2): 49−60 doi: 10.1145/2641190.2641198
|
[36] |
Alcobaça E, Siqueira F, Rivolli A, et al. MFE: Towards reproducible meta-feature extraction[J]. Journal of Machine Learning Research, 2020, 21: 1−5
|
[37] |
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825−2830
|
[38] |
Chollet F. Keras[EB/OL]. 2015[2022-07-16].https://keras.io
|
[39] |
Brazdil P B, Soares C. Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results[J]. Machine Learning, 2003, 50(3): 251−277 doi: 10.1023/A:1021713901879
|
[40] |
李洪奇,徐青松,朱丽萍,等. 基于数据集相似性的分类算法推荐[J]. 计算机应用与软件,2016,33(8):62−66 doi: 10.3969/j.issn.1000-386x.2016.08.014
Li Hongqi, Xu Qingsong, Zhu Liping, et al. Classification algorithms recommendation based on dataset similarity[J]. Computer Applications and Software, 2016, 33(8): 62−66 (in Chinese) doi: 10.3969/j.issn.1000-386x.2016.08.014
|
[41] |
Mirjalili S, Jangir P, Saremi S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems[J]. Applied Intelligence, 2017, 46(1): 79−95 doi: 10.1007/s10489-016-0825-8
|
[42] |
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA2[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182−197 doi: 10.1109/4235.996017
|
[43] |
Nebro A J, Durillo J J, Garcia-Nieto J, et al. SMPSO: A new PSO-based metaheuristic for multi-objective optimization[C]//Proc of the 2009 IEEE Symp on Computational Intelligence in Milti-Criteria Decision-Making. Piscataway, NJ: IEEE, 2009: 66−73
|
[44] |
Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm, 103[R]. Zurich: Swiss Federal Institute of Technology, 2001
|
[45] |
Benítez-Hidalgo A, Nebro A J, García-Nieto J, et al. jMetalPy: A Python framework for multi-objective optimization with metaheuristics[J]. Swarm and Evolutionary Computation, 2019, 51: 100598 doi: 10.1016/j.swevo.2019.100598
|
[46] |
Goh C-K, Tan K C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(1): 103−127 doi: 10.1109/TEVC.2008.920671
|
[47] |
Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257−271 doi: 10.1109/4235.797969
|
[48] |
Schott J R. Fault tolerant design using single and multicriteria genetic algorithm optimization[D]. Cambridge, MA: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995
|
[1] | Jia Xibin, Li Chen, Wang Luo, Zhang Muchen, Liu Xiaojian, Zhang Yangyang, Wen Jiakai. A Multimodal Cross-Domain Sentiment Analysis Algorithm Based on Feature Disentanglement Meta-Optimization[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440624 |
[2] | Kang Zhao, Liu Liang, Han Meng. Semi-Supervised Classification Based on Transformed Learning[J]. Journal of Computer Research and Development, 2023, 60(1): 103-111. DOI: 10.7544/issn1000-1239.202110811 |
[3] | Ju Zhuoya, Wang Zhihai. A Bayesian Classification Algorithm Based on Selective Patterns[J]. Journal of Computer Research and Development, 2020, 57(8): 1605-1616. DOI: 10.7544/issn1000-1239.2020.20200196 |
[4] | Meng Jun, Zhang Jing, Jiang Dingling, He Xinyu, Li Lishuang. Selective Ensemble Classification Integrated with Affinity Propagation Clustering[J]. Journal of Computer Research and Development, 2018, 55(5): 986-993. DOI: 10.7544/issn1000-1239.2018.20170077 |
[5] | Wang Jun, Wei Jinmao, Zhang Lu. Multi-Task Feature Learning Algorithm Based on Preserving Classification Information[J]. Journal of Computer Research and Development, 2017, 54(3): 537-548. DOI: 10.7544/issn1000-1239.2017.20150963 |
[6] | Duan Jie, Hu Qinghua, Zhang Lingjun, Qian Yuhua, Li Deyu. Feature Selection for Multi-Label Classification Based on Neighborhood Rough Sets[J]. Journal of Computer Research and Development, 2015, 52(1): 56-65. DOI: 10.7544/issn1000-1239.2015.20140544 |
[7] | Zhu Jun, Zhao Jieyu, Dong Zhenyu. Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency[J]. Journal of Computer Research and Development, 2014, 51(9): 1919-1928. DOI: 10.7544/issn1000-1239.2014.20140138 |
[8] | Li Lina, Ouyang Jihong, Liu Dayou, Gao Wenjie. An Active Collective Classification Method Combing Feature Selection and Link Filtering[J]. Journal of Computer Research and Development, 2013, 50(11): 2349-2357. |
[9] | Chen Tieming, Ma Jixia, Samuel H.Huang, Cai Jiamei. Novel and Efficient Method on Feature Selection and Data Classification[J]. Journal of Computer Research and Development, 2012, 49(4): 735-745. |
[10] | Jiang Yuan and Zhou Zhihua. A Text Classification Method Based on Term Frequency Classifier Ensemble[J]. Journal of Computer Research and Development, 2006, 43(10): 1681-1687. |