• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
面向大语言模型安全部署的可信评估体系[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440566
Citation: 面向大语言模型安全部署的可信评估体系[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440566

面向大语言模型安全部署的可信评估体系

More Information
  • Received Date: June 20, 2024
  • Available Online: April 02, 2025
  • The recent popularity of large language models (LLMs) has brought a significant impact to boundless fields, particularly through their open-ended ecosystem such as the APIs, open-sourced models, and plugins. However, with their widespread deployment, there is a general lack of research that thoroughly discusses and analyzes the potential risks concealed. In that case, we intend to conduct a preliminary but pioneering study covering the robustness, consistency, and credibility of LLMs systems. With most of the related literature in the era of LLM uncharted, we propose an automated workflow that copes with an upscaled number of queries/responses. Overall, we conduct over a million queries to the mainstream LLMs including ChatGPT, LLaMA, and OPT. Core to our workflow consists of a data primitive, followed by an automated interpreter that evaluates these LLMs under different adversarial metrical systems. As a result, we draw several, and perhaps unfortunate, conclusions that are quite uncommon from this trendy community. Briefly, they are: (i)-the minor but inevitable error occurrence in the user-generated query input may, by chance, cause the LLM to respond unexpectedly; (ii)-LLMs possess poor consistency when processing semantically similar query input. In addition, as a side finding, we find that ChatGPT is still capable to yield the correct answer even when the input is polluted at an extreme level. While this phenomenon demonstrates the powerful memorization of the LLMs, it raises serious concerns about using such data for LLM-involved evaluation in academic development. To deal with it, we propose a novel index associated with a dataset that roughly decides the feasibility of using such data for LLM-involved evaluation. Extensive empirical studies are tagged to support the aforementioned claims.
  • Related Articles

    [1]Zhang Chunyun, Zhao Hongyan, Deng Jiqin, Cui Chaoran, Dong Xiaolin, Chen Zhumin. Category Adversarial Joint Learning Method for Cross-Prompt Automated Essay Scoring[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440266
    [2]Li Yinqiang, Lan Tian, Liu Yao, Xiang Feiyang, Sun Lichun, Du Zhihan, Liu Qiao. Term-Prompted and Dual-Path Text Generation for Aspect Sentiment Triplet Extraction[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330838
    [3]Zhu Rongjiang, Shi Yuheng, Yang Shuo, Wang Ziyi, Wu Xinxiao. Open-Vocabulary Multi-Label Action Recognition Guided by LLM Knowledge[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440522
    [4]Cui Yuanning, Sun Zequn, Hu Wei. A Pre-trained Universal Knowledge Graph Reasoning Model Based on Rule Prompts[J]. Journal of Computer Research and Development, 2024, 61(8): 2030-2044. DOI: 10.7544/issn1000-1239.202440133
    [5]Lai Peiyuan, Li Cheng, Wang Zenghui, Wang Changdong, Liao Dezhang. Traffic Flow Prediction Based on Graph Prompt-Finetuning[J]. Journal of Computer Research and Development, 2024, 61(8): 2020-2029. DOI: 10.7544/issn1000-1239.202440113
    [6]Wu Di, Zhao Yanyan, Qin Bing. A Joint Emotion-Cognition Based Approach for Moral Judgement[J]. Journal of Computer Research and Development, 2024, 61(5): 1193-1205. DOI: 10.7544/issn1000-1239.202330812
    [7]Wang Mengru, Yao Yunzhi, Xi Zekun, Zhang Jintian, Wang Peng, Xu Ziwen, Zhang Ningyu. Safety Analysis of Large Model Content Generation Based on Knowledge Editing[J]. Journal of Computer Research and Development, 2024, 61(5): 1143-1155. DOI: 10.7544/issn1000-1239.202330965
    [8]Jin Dongming, Jin Zhi, Chen Xiaohong, Wang Chunhui. ChatModeler: A Human-Machine Collaborative and Iterative Requirements Elicitation and Modeling Approach via Large Language Models[J]. Journal of Computer Research and Development, 2024, 61(2): 338-350. DOI: 10.7544/issn1000-1239.202330746
    [9]Liu Xinghong, Zhou Yi, Zhou Tao, Qin Jie. Self-Paced Learning for Open-Set Domain Adaptation[J]. Journal of Computer Research and Development, 2023, 60(8): 1711-1726. DOI: 10.7544/issn1000-1239.202330210
    [10]Du Zhijuan, Du Zhirong, Wang Lu. Open Knowledge Graph Representation Learning Based on Neighbors and Semantic Affinity[J]. Journal of Computer Research and Development, 2019, 56(12): 2549-2561. DOI: 10.7544/issn1000-1239.2019.20190648

Catalog

    Article views (8) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return