• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zou Bowei, Zhang Yu, Fan Jili, Zheng Wei, and Liu Ting. Research on Personalized Information Retrieval Based on User’s New Interest Detection[J]. Journal of Computer Research and Development, 2009, 46(9): 1594-1600.
Citation: Zou Bowei, Zhang Yu, Fan Jili, Zheng Wei, and Liu Ting. Research on Personalized Information Retrieval Based on User’s New Interest Detection[J]. Journal of Computer Research and Development, 2009, 46(9): 1594-1600.

Research on Personalized Information Retrieval Based on User’s New Interest Detection

More Information
  • Published Date: September 14, 2009
  • An important characteristic of next generation search engine is personalization. Personalized information retrieval (PIR) focuses on users. It captures users’ interest in different kinds (explicit, implicit interest and interest of similar users). These information of users are integrated and used to improve the result of information retrieval system. Personalized information retrieval can grasp the users’ retrieval intention and find personalized results. The authors propose the new interest detection task, which identifies the queries containing users’ new retrieval interest by the change of retrieval object. Simultaneously, by using and improving the TextTiling algorithm, the retrieval system is enabled to automatically choose the appropriate dynamic threshold and detect the change of users’ interest. The retrieval information and labeled answers of users are used to establish the experimental dataset. The evaluation matrix includes false alarm rate, miss alarm rate, and cost of detection. In the experiment of personalized information retrieval system, the improved TextTiling algorithm improves the new interest detection system by 16.4%. What’s more, the new interest detection task improves the performance of the personalized information retrieval system is by 3.8%. The experiment shows that mining users’ interest with this method can decrease the false information in users’ models and improve the result of precision of users’ interest detection.
  • Related Articles

    [1]Pei Zhongyi, Liu Lin, Wang Chen, Wang Jianmin. An Explainability-Centric Requirements Analysis Framework for Machine Learning Applications[J]. Journal of Computer Research and Development, 2024, 61(4): 983-1002. DOI: 10.7544/issn1000-1239.202220794
    [2]Jin Dongming, Jin Zhi, Chen Xiaohong, Wang Chunhui. ChatModeler: A Human-Machine Collaborative and Iterative Requirements Elicitation and Modeling Approach via Large Language Models[J]. Journal of Computer Research and Development, 2024, 61(2): 338-350. DOI: 10.7544/issn1000-1239.202330746
    [3]Song Rui, LiTong, Dong Xin, Ding Zhiming. A User Requirements Preference Analysis Method of Mobile Applications Based on Meta-Path Embedding[J]. Journal of Computer Research and Development, 2021, 58(4): 749-762. DOI: 10.7544/issn1000-1239.2021.20200737
    [4]Peng Zhenlian, Wang Jian, He Keqing, Tang Mingdong. A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering[J]. Journal of Computer Research and Development, 2016, 53(9): 2055-2066. DOI: 10.7544/issn1000-1239.2016.20150426
    [5]Wang Jin, Huang Zhiqiu. Privacy Requirement Modeling and Consistency Checking in Cloud Computing[J]. Journal of Computer Research and Development, 2015, 52(10): 2395-2410. DOI: 10.7544/issn1000-1239.2015.20150513
    [6]Li Qingyong, Liang Zhengping, Huang Yaping, Shi Zhongzhi. Sparseness Representation Model for Defect Detection and Its Application[J]. Journal of Computer Research and Development, 2014, 51(9): 1929-1935. DOI: 10.7544/issn1000-1239.2014.20140153
    [7]Liu Huaxiao, Jin Ying, and Ma Pengfei. An Approach to Requirements Change Impact Analysis[J]. Journal of Computer Research and Development, 2013, 50(8): 1769-1777.
    [8]Wu Huaiguang, Wu Guoqing, Chen Shu, and Wan Li. A Software Behavior Oriented Requirements Model and Properties Verification[J]. Journal of Computer Research and Development, 2011, 48(5): 869-876.
    [9]Ding Shuai, Lu Fujun, Yang Shanlin, Xia Chengyi. A Requirement-Driven Software Trustworthiness Evaluation and Evolution Model[J]. Journal of Computer Research and Development, 2011, 48(4): 647-655.
    [10]Shu Fengdi, Zhao Yuzhu, Wang Jizhe, Li Mingshu. User-Driven Requirements Elicitation Method with the Support of Personalized Domain Knowledge[J]. Journal of Computer Research and Development, 2007, 44(6): 1044-1052.
  • Cited by

    Periodical cited type(10)

    1. 何雪锋,周洁,陈德光,廖海. 自然语言处理的深度学习模型综述. 计算机应用与软件. 2025(02): 1-19+101 .
    2. 吴欢欢,谢瑞麟,乔塬心,陈翔,崔展齐. 基于可解释性分析的深度神经网络优化方法. 计算机研究与发展. 2024(01): 209-220 . 本站查看
    3. 桂韬,奚志恒,郑锐,刘勤,马若恬,伍婷,包容,张奇. 基于深度学习的自然语言处理鲁棒性研究综述. 计算机学报. 2024(01): 90-112 .
    4. 黄云,董天宇. 电力人工智能指标算法模型多场景鲁棒性评价方法. 吉林大学学报(信息科学版). 2024(01): 162-167 .
    5. 王小萌,张华,丁金扣,王稼慧. 一种随机束搜索文本攻击黑盒算法. 北京邮电大学学报. 2024(02): 24-29 .
    6. 王春东,孙嘉琪,杨文军. 基于矫正理解的中文文本对抗样本生成方法. 计算机工程. 2023(02): 37-45 .
    7. 王浩,唐桥虹,唐娜,郝烨,李澍,孟祥峰,李佳戈. 基于神经网络的心电分类算法抗扰性影响分析. 中国医疗设备. 2023(03): 61-65 .
    8. 刘颖,杨鹏飞,张立军,吴志林,冯元. 前馈神经网络和循环神经网络的鲁棒性验证综述. 软件学报. 2023(07): 3134-3166 .
    9. 吴舟婷,罗森林. 基于随机掩码和对抗训练的文本隐私保护实验. 实验技术与管理. 2023(08): 72-76 .
    10. 金志刚,周峻毅,何晓勇. 面向自然语言处理领域的对抗攻击研究与展望. 信息安全研究. 2022(03): 202-211 .

    Other cited types(17)

Catalog

    Article views (956) PDF downloads (526) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return