• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Peng Zhenlian, Wang Jian, He Keqing, Tang Mingdong. A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering[J]. Journal of Computer Research and Development, 2016, 53(9): 2055-2066. DOI: 10.7544/issn1000-1239.2016.20150426
Citation: Peng Zhenlian, Wang Jian, He Keqing, Tang Mingdong. A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering[J]. Journal of Computer Research and Development, 2016, 53(9): 2055-2066. DOI: 10.7544/issn1000-1239.2016.20150426

A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering

More Information
  • Published Date: August 31, 2016
  • With the rapid development of Internet and Web service related technologies,developing software system on Internet is increasingly popular. Software development is a multi-knowledge-intensive process in which requirements elicitation plays a key role. Software systems deployed on Internet need to meet the needs of various kinds of customers and users who are geographically distributed,which increases the difficulties of software requirements elicitation. Meanwhile,more and more software systems that share similar functions are deployed on Internet,which provides a new way to elicit software requirements. Toward this end,recommender systems have been leveraged in the requirements elicitation to recommend missing features for software products by comparing the requirements descriptions of existing similar software systems. In order to improve the prediction accuracy of the recommended features of the software system,a requirements elicitation approach based on feature model and KNN (K-nearest neighbors) collaborative filtering recommendation system is proposed in this paper. An algorithm named FM_KNN is presented by utilizing constraint relations between features in KNN collaborative filtering recommendation system. Experiments conducted on a real data set and a simulated data set, by comparing the proposed FM_KNN with two existing methods, i.e., KNN and an approach that combines association rule mining with KNN, show that the proposed approach can achieve higher precision.
  • Related Articles

    [1]Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
    [2]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [3]Zhang Liqing, Guo Dong, Wu Shaoling, Cui Haibo, Wang Wei. An Ultra Lightweight Container that Maximizes Memory Sharing and Minimizes the Runtime Environment[J]. Journal of Computer Research and Development, 2019, 56(7): 1545-1555. DOI: 10.7544/issn1000-1239.2019.20180511
    [4]Yan Xiaoqiang, Ye Yangdong. Cross-Media Clustering by Share and Private Information Maximization[J]. Journal of Computer Research and Development, 2019, 56(7): 1370-1382. DOI: 10.7544/issn1000-1239.2019.20180470
    [5]Zhang Fenxiang, Chen Huahui, Qian Jiangbo, Dong Yihong. HSSM: A Hierarchical Method for Streaming Submodular Maximization[J]. Journal of Computer Research and Development, 2016, 53(8): 1792-1805. DOI: 10.7544/issn1000-1239.2016.20160140
    [6]Li Xiaokang, Zhang Xi, Sun Hao, Sun Guangzhong. Influence Maximization Across Multi-Channels in Social Network[J]. Journal of Computer Research and Development, 2016, 53(8): 1709-1718. DOI: 10.7544/issn1000-1239.2016.20160211
    [7]Guo Jingfeng, Lü Jiaguo. Influence Maximization Based on Information Preference[J]. Journal of Computer Research and Development, 2015, 52(2): 533-541. DOI: 10.7544/issn1000-1239.2015.20131311
    [8]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [9]Chen Hao and Wang Yitong. Threshold-Based Heuristic Algorithm for Influence Maximization[J]. Journal of Computer Research and Development, 2012, 49(10): 2181-2188.
    [10]Qi Yingjian, Luo Siwei, Huang Yaping, Li Aijun, Liu Yunhui. An Annealing Expectation Maximization Algorithm[J]. Journal of Computer Research and Development, 2006, 43(4): 654-660.

Catalog

    Article views (1458) PDF downloads (650) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return