• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Yaonan, Zhang Ying, Li Chunsheng. Kernel Matrix Based Incremental Learning Isomap Algorithm[J]. Journal of Computer Research and Development, 2009, 46(9): 1515-1522.
Citation: Wang Yaonan, Zhang Ying, Li Chunsheng. Kernel Matrix Based Incremental Learning Isomap Algorithm[J]. Journal of Computer Research and Development, 2009, 46(9): 1515-1522.

Kernel Matrix Based Incremental Learning Isomap Algorithm

More Information
  • Published Date: September 14, 2009
  • The Isomap algorithm operates in batch mode, meaning that all data should to be available when training is done. However, in many scenarios the data come sequentially and the effect of the data is accumulated. When new data is added, it takes a long time to update the geodesic distance matrix including all data points. In order to improve the computing speed, a kernel based incremental learning Isomap algorithm (ILIsomap) is proposed. The geodesic distance matrix can be interpreted as a kernel matrix, and then ILIsomap exploits a constant-shifting method to guarantee that the geodesic distance matrix satisfy the Mercer kernel. ILIsomap only needs to calculate the geodesic distance between new data and the original data, making it possible to project test data points onto low-dimensional manifold embedding using a kernel trick as in kernel PCA. Experimental results on Swiss data sets, Helix data sets, and multi-posture face data set demonstrate that ILIsomap reduces the computational complexity, making it possible to quickly visualize low-dimensional manifolds embedding in high-dimensional space.
  • Related Articles

    [1]Zhao Xiaolei, Chen Zhaoyun, Shi Yang, Wen Mei, Zhang Chunyuan. Kernel Code Automatic Generation Framework on FT-Matrix[J]. Journal of Computer Research and Development, 2023, 60(6): 1232-1245. DOI: 10.7544/issn1000-1239.202330058
    [2]Liu Biao, Zhang Fangjiao, Wang Wenxin, Xie Kang, Zhang Jianyi. A Byzantine-Robust Federated Learning Algorithm Based on Matrix Mapping[J]. Journal of Computer Research and Development, 2021, 58(11): 2416-2429. DOI: 10.7544/issn1000-1239.2021.20210633
    [3]Zhou Yu, He Jianjun, Gu Hong. Fast Kernel-Based Partial Label Learning Algorithm Based on Variational Gaussian Process Model[J]. Journal of Computer Research and Development, 2017, 54(1): 63-70. DOI: 10.7544/issn1000-1239.2017.20150796
    [4]Yang Shuaifeng, Zhao Ruizhen. Image Super-Resolution Reconstruction Based on Low-Rank Matrix and Dictionary Learning[J]. Journal of Computer Research and Development, 2016, 53(4): 884-891. DOI: 10.7544/issn1000-1239.2016.20140726
    [5]Tian Meng, Wang Wenjian. Generalized Kernel Polarization Criterion for Optimizing Gaussian Kernel[J]. Journal of Computer Research and Development, 2015, 52(8): 1722-1734. DOI: 10.7544/issn1000-1239.2015.20150110
    [6]Chen Dayao, Chen Xiuhong, and Dong Changjian. Face Recognition Based on Null-Space Kernel Discriminant Analysis[J]. Journal of Computer Research and Development, 2013, 50(9): 1924-1932.
    [7]Xue Yu, Zhuang Yi, Meng Xin, Zhang Youyi. Self-Adaptive Learning Based Ensemble Algorithm for Solving Matrix Eigenvalues[J]. Journal of Computer Research and Development, 2013, 50(7): 1435-1443.
    [8]Hu Wenjun, Wang Shitong, Tao Jianwen. Maximum Vector-Angular Margin Kernel Classification[J]. Journal of Computer Research and Development, 2012, 49(4): 770-776.
    [9]Ding Lizhong and Liao Shizhong. KMA-α:A Kernel Matrix Approximation Algorithm for Support Vector Machines[J]. Journal of Computer Research and Development, 2012, 49(4): 746-753.
    [10]Liu Kebin, Li Fang, Liu Lei, and Han Ying. Implementation of a Kernel-Based Chinese Relation Extraction System[J]. Journal of Computer Research and Development, 2007, 44(8): 1406-1411.

Catalog

    Article views (1073) PDF downloads (631) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return