• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Peng, Wang Jingjing, and Yu Nenghai. A Kernel and User-Based Collaborative Filtering Recommendation Algorithm[J]. Journal of Computer Research and Development, 2013, 50(7): 1444-1451.
Citation: Wang Peng, Wang Jingjing, and Yu Nenghai. A Kernel and User-Based Collaborative Filtering Recommendation Algorithm[J]. Journal of Computer Research and Development, 2013, 50(7): 1444-1451.

A Kernel and User-Based Collaborative Filtering Recommendation Algorithm

More Information
  • Published Date: July 14, 2013
  • With the development of information technology, people can get more and more information nowadays. To help users find the information that meets their needs or interest among large amount of data, personalized recommendation technology has emerged and flourished. As a most widely used and successful recommendation technique, collaborative filtering algorithm has widely spread and concerned many researchers. Traditional collaborative filtering algorithms face data sparseness and cold start problems. As traditional algorithms only consider the limited data, it is difficult to estimate the accurate similarity between users, as well as the final recommendation results. This paper presents a kernel-density-estimation-based user interest model, and based on this model, a user-based collaborative recommendation algorithm based on kernel method is proposed. Through mining users' latent interest suggested by the limited ratings, the algorithm can well estimate the distribution of users' interest in the item space, and provide a better user similarity calculation method. A distance measurement based on classification similarity is proposed for the kernel methods, and two kernel functions are investigated to estimate the distribution of user interest. KL divergence is utilized to measure the similarity of users' interest distribution. Experiments show that the algorithm can effectively improve the performance of the recommendation system, especially in the case of sparse data.
  • Related Articles

    [1]Xie Qin, Zhang Qinghua, Wang Guoyin. An Adaptive Three-way Spam Filter with Similarity Measure[J]. Journal of Computer Research and Development, 2019, 56(11): 2410-2423. DOI: 10.7544/issn1000-1239.2019.20180793
    [2]Song Jinfeng, Wen Lijie, Wang Jianmin. A Similarity Measure for Process Models Based on Task Occurrence Relations[J]. Journal of Computer Research and Development, 2017, 54(4): 832-843. DOI: 10.7544/issn1000-1239.2017.20151176
    [3]Zhao Yongwei, Zhou Yuan, Li Bicheng. Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement[J]. Journal of Computer Research and Development, 2016, 53(5): 1043-1052. DOI: 10.7544/issn1000-1239.2016.20150070
    [4]Wang Shaopeng, Wen Yingyou, Zhao Hong. Similarity Query Processing Algorithm over Data Stream Based on LCSS[J]. Journal of Computer Research and Development, 2015, 52(9): 1976-1991. DOI: 10.7544/issn1000-1239.2015.20140479
    [5]Xiao Yu and Yu Jian. A Weighted Self Adaptive Similarity Measure[J]. Journal of Computer Research and Development, 2013, 50(9): 1876-1882.
    [6]Shen Qingni, Du Hong, Wen Han, Qing Sihan. A Data Sealing Approach Based on Integrity Measurement Architecture[J]. Journal of Computer Research and Development, 2012, 49(1): 210-216.
    [7]Zhu Yangyong, Dai Dongbo, and Xiong Yun. A Survey of the Research on Similarity Query Technique of Sequence Data[J]. Journal of Computer Research and Development, 2010, 47(2): 264-276.
    [8]Xing Chunxiao, Gao Fengrong, Zhan Sinan, Zhou Lizhu. A Collaborative Filtering Recommendation Algorithm Incorporated with User Interest Change[J]. Journal of Computer Research and Development, 2007, 44(2): 296-301.
    [9]Liu Bing, Yan Heping, Duan Jiangjiao, Wang Wei, and Shi Baile. A Bottom-Up Distance-Based Index Tree for Metric Space[J]. Journal of Computer Research and Development, 2006, 43(9): 1651-1657.
    [10]Xiu Yu, Wang Shitong, Wu Xisheng, Hu Dewen. The Directional Similarity-Based Clustering Method DSCM[J]. Journal of Computer Research and Development, 2006, 43(8): 1425-1431.

Catalog

    Article views (1233) PDF downloads (854) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return