• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Ming, Liu Bingquan, and Liu Yuanchao. A Fast Clustering Algorithm for Information Retrieval[J]. Journal of Computer Research and Development, 2013, 50(7): 1452-1463.
Citation: Liu Ming, Liu Bingquan, and Liu Yuanchao. A Fast Clustering Algorithm for Information Retrieval[J]. Journal of Computer Research and Development, 2013, 50(7): 1452-1463.

A Fast Clustering Algorithm for Information Retrieval

More Information
  • Published Date: July 14, 2013
  • Due to the fast advance of information retrieval technique, information overload has become a headache problem to Internet users. In order to alleviate user's inconvenience to distinguish useful information from massive junk information, the research for improving retrieval system has gradually become hotter and hotter. Up to now, many techniques have been proposed for automatically categorizing and organizing Web information for users. Among them, clustering is one of the most extensively employed tools. Through clustering retrieval information, Internet users can quickly find out where their interesting retrieval results locate. Unfortunately, traditional clustering algorithms are either ineffective or inefficient for this task. As a result, a novel algorithm specially designed for clustering retrieval information is proposed. This algorithm applies maximum-minimum principle to extract accumulation points to form initial clusters at first. Experiment results show that, this initial cluster partitioning is approximate to the optimal partitioning and only needs small iterative adjustment steps to get convergence. After that, it iteratively adjusts feature set of each cluster to let cluster partitioning more and more precise. Simultaneously, it hierarchically separates the clusters, which don't meet convergence condition, into some sub-clusters to possess the merit of hierarchically representing information. Experiment results also demonstrate that time complexity of this algorithm is close to the recent techniques for clustering retrieval information. Besides, because of iteratively adjusting feature sets, it enables clustering results to be more precise and reasonable.
  • Related Articles

    [1]Guo Husheng, Zhang Yang, Wang Wenjian. Two-Stage Adaptive Ensemble Learning Method for Different Types of Concept Drift[J]. Journal of Computer Research and Development, 2024, 61(7): 1799-1811. DOI: 10.7544/issn1000-1239.202330452
    [2]Yuan Zhong, Chen Hongmei, Wang Zhihong, Li Tianrui. Exploiting Hybrid Kernel-Based Fuzzy Complementary Mutual Information for Selecting Features[J]. Journal of Computer Research and Development, 2023, 60(5): 1111-1120. DOI: 10.7544/issn1000-1239.202111272
    [3]Zhou Yu, He Jianjun, Gu Hong. Fast Kernel-Based Partial Label Learning Algorithm Based on Variational Gaussian Process Model[J]. Journal of Computer Research and Development, 2017, 54(1): 63-70. DOI: 10.7544/issn1000-1239.2017.20150796
    [4]Feng Chang, Liao Shizhong. Model Selection for Gaussian Kernel Support Vector Machines in Random Fourier Feature Space[J]. Journal of Computer Research and Development, 2016, 53(9): 1971-1978. DOI: 10.7544/issn1000-1239.2016.20150489
    [5]Tian Meng, Wang Wenjian. Generalized Kernel Polarization Criterion for Optimizing Gaussian Kernel[J]. Journal of Computer Research and Development, 2015, 52(8): 1722-1734. DOI: 10.7544/issn1000-1239.2015.20150110
    [6]Liu Yong, Jiang Shali, Liao Shizhong. Approximate Gaussian Kernel for Large-Scale SVM[J]. Journal of Computer Research and Development, 2014, 51(10): 2171-2177. DOI: 10.7544/issn1000-1239.2014.20130825
    [7]Shao Zengzhen, Wang Hongguo, Liu Hong, Song Chaochao, Meng Chunhua, Yu Hongling. Heuristic Optimization Algorithms of Multi-Carpooling Problem Based on Two-Stage Clustering[J]. Journal of Computer Research and Development, 2013, 50(11): 2325-2335.
    [8]Chen Yarui and Liao Shizhong. A Normalized Structure Selection Algorithm Based on Coupling for Gaussian Mean Fields[J]. Journal of Computer Research and Development, 2010, 47(9): 1497-1503.
    [9]Qiao Lishan, Chen Songcan, Wang Min. Image Thresholding Based on Relevance Vector Machine[J]. Journal of Computer Research and Development, 2010, 47(8): 1329-1337.
    [10]Liu Xiangdong, Luo Bin, and Chen Zhaoqian. Optimal Model Selection for Support Vector Machines[J]. Journal of Computer Research and Development, 2005, 42(4): 576-581.

Catalog

    Article views (944) PDF downloads (822) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return