• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hao Zhongxiao, Han Qilong. Real-Time Multiversion Concurrency Control Based on Validation Factor[J]. Journal of Computer Research and Development, 2006, 43(3): 522-527.
Citation: Hao Zhongxiao, Han Qilong. Real-Time Multiversion Concurrency Control Based on Validation Factor[J]. Journal of Computer Research and Development, 2006, 43(3): 522-527.

Real-Time Multiversion Concurrency Control Based on Validation Factor

More Information
  • Published Date: March 14, 2006
  • To solve the problem of system overload that is caused by unnecessary transaction restarts with optimistic concurrency control in real-time database systems, avalidation factor (VF) concept and a new method called real-time multiversion concurrency control based on VF (MVOCC-VF) are proposed. By checking the VF, the transaction with higher finished degree is scheduled preferentially. By combining multiversion mechanism, the unnecessary transaction numbers are decreased, especially ensuring the near-to-completed transactions to be accomplished. Theoretical analysis and experimental results demonstrate that the new method can outperform the previous ones.
  • Related Articles

    [1]Ren Jiadong, Liu Xinqian, Wang Qian, He Haitao, Zhao Xiaolin. An Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575. DOI: 10.7544/issn1000-1239.2019.20180063
    [2]Liu Lu, Zuo Wanli, Peng Tao. Tensor Representation Based Dynamic Outlier Detection Method in Heterogeneous Network[J]. Journal of Computer Research and Development, 2016, 53(8): 1729-1739. DOI: 10.7544/issn1000-1239.2016.20160178
    [3]Zhao Xingwang, Liang Jiye. An Attribute Weighted Clustering Algorithm for Mixed Data Based on Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(5): 1018-1028. DOI: 10.7544/issn1000-1239.2016.20150131
    [4]Huang Tianqiang, Yu Yangqiang, Guo Gongde, Qin Xiaolin. Trajectory Outlier Detection Based on Semi-Supervised Technology[J]. Journal of Computer Research and Development, 2011, 48(11): 2074-2082.
    [5]Zhang Jing, Sun Zhihui, Yang Ming, Ni Weiwei, Yang Yidong. Fast Incremental Outlier Mining Algorithm Based on Grid and Capacity[J]. Journal of Computer Research and Development, 2011, 48(5): 823-830.
    [6]Yu Hao, Wang Bin, Xiao Gang, Yang Xiaochun. Distance-Based Outlier Detection on Uncertain Data[J]. Journal of Computer Research and Development, 2010, 47(3): 474-484.
    [7]Ni Weiwei, Chen Geng, Lu Jieping, Wu Yingjie, Sun Zhihui. Local Entropy Based Weighted Subspace Outlier Mining Algorithm[J]. Journal of Computer Research and Development, 2008, 45(7): 1189-1194.
    [8]Jin Yifu, Zhu Qingsheng, Xing Yongkang. An Algorithm for Clustering of Outliers Based on Key Attribute Subspace[J]. Journal of Computer Research and Development, 2007, 44(4): 651-659.
    [9]Ni Weiwei, Lu Jieping, Chen Geng, and Sun Zhihui. An Efficient Data Stream Outliers Detection Algorithm Based on k-Means Partitioning[J]. Journal of Computer Research and Development, 2006, 43(9): 1639-1643.
    [10]Yang Yidong, Sun Zhihui, Zhang Jing. Finding Outliers in Distributed Data Streams Based on Kernel Density Estimation[J]. Journal of Computer Research and Development, 2005, 42(9): 1498-1504.

Catalog

    Article views (595) PDF downloads (574) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return