• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Fang, Luo Haiyong, Ma Yan, Xu Junjun. An Accurate Fingerprinting Localization Algorithm Based on Common Beacons[J]. Journal of Computer Research and Development, 2012, 49(2): 243-252.
Citation: Zhao Fang, Luo Haiyong, Ma Yan, Xu Junjun. An Accurate Fingerprinting Localization Algorithm Based on Common Beacons[J]. Journal of Computer Research and Development, 2012, 49(2): 243-252.

An Accurate Fingerprinting Localization Algorithm Based on Common Beacons

More Information
  • Published Date: February 14, 2012
  • WiFi fingerprinting localization is currently the most promising method to building large-scale urban localization systems for both indoor and outdoor environments. To reduce the negative effect caused by the fluctuation of the received signal strength (RSS) and improve the positioning accuracy and robustness, an accurate radio fingerprinting localization algorithm based on common beacons is presented in this paper. It formulates the object localization as a Bayesian estimation problem. By employing Gaussian mixture model to accurately represent the complex training fingerprint pattern, and using a Markov-chain state transition model and an adaptive grid collection selection method based on the posterior probability to exploit the object’s past states and environment layout information, the algorithm not only can reduce the size of grid search space, but also can restrict the impossible position jump during the moving process and improves the localization accuracy and robustness. Practical experimental results show that the proposed positioning method can achieve localization error within 3 m with 90 percent probability, which works much better than the single Gaussian localization model.
  • Related Articles

    [1]Hu Hao, Liu Yuling, Zhang Hongqi, Yang Yingjie, Ye Runguo. Route Prediction Method for Network Intrusion Using Absorbing Markov Chain[J]. Journal of Computer Research and Development, 2018, 55(4): 831-845. DOI: 10.7544/issn1000-1239.2018.20170087
    [2]Tang Wanning, Wang Mingwen, Wan Jianyi. Markov Network Retrieval Model Based on Document Cliques[J]. Journal of Computer Research and Development, 2014, 51(10): 2248-2254. DOI: 10.7544/issn1000-1239.2014.20130343
    [3]Wu Caihua, Liu Juntao, Peng Shirui, Li Haihong. Deriving Markov Chain Usage Model from UML Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1811-1819.
    [4]Zhang Zhan, Liu Guangjie, Dai Yuewei, Wang Zhiquan. A Self-Adaptive Image Steganography Algorithm Based on Cover-Coding and Markov Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1668-1675.
    [5]Bao Xiao'an, Yao Lan, Zhang Na, and Song Jinyu. Adaptive Software Testing Based on Controlled Markov Chain[J]. Journal of Computer Research and Development, 2012, 49(6): 1332-1338.
    [6]Du Yi, Zhang Ting, Lu Detang, Li Daolun. An Interpolation Method Using an Improved Markov Model[J]. Journal of Computer Research and Development, 2012, 49(3): 565-571.
    [7]Zhu Feng, Luo Limin, Song Yuqing, Chen Jianmei, Zuo Xin. Adaptive Spatially Neighborhood Information Gaussian Mixture Model for Image Segmentation[J]. Journal of Computer Research and Development, 2011, 48(11): 2000-2007.
    [8]Lü Mingqi, Chen Ling, Chen Gencai. Position Prediction Based on Adaptive Multi-Order Markov Model[J]. Journal of Computer Research and Development, 2010, 47(10): 1764-1770.
    [9]Zhao Jing, Huang Houkuan, and Tian Shengfeng. Protocol Anomaly Detection Based on Hidden Markov Model[J]. Journal of Computer Research and Development, 2010, 47(4): 621-627.
    [10]Tian Xinguang, Gao Lizhi, Sun Chunlai, Zhang Eryang. Anomaly Detection of Program Behaviors Based on System Calls and Homogeneous Markov Chain Models[J]. Journal of Computer Research and Development, 2007, 44(9): 1538-1544.

Catalog

    Article views (822) PDF downloads (794) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return