• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tang Yunting, Cheng Xianyi. The Studying of Frame APRF of Pattern-Recognition Based on Agent[J]. Journal of Computer Research and Development, 2006, 43(5): 867-873.
Citation: Tang Yunting, Cheng Xianyi. The Studying of Frame APRF of Pattern-Recognition Based on Agent[J]. Journal of Computer Research and Development, 2006, 43(5): 867-873.

The Studying of Frame APRF of Pattern-Recognition Based on Agent

More Information
  • Published Date: May 14, 2006
  • The pattern-recognition course is to the categorised course which inputs the mode, kind is essence of the mode, it is generally acknowledged the vector quantity of the characteristic is a generalization of the mode, because of this understanding, Make the computer discern accurately the mode is difficult for some one kind, the problem lies in on the basis of what characteristic vector quantity summarized the human discernment activity is never, But because of the understanding that input a certain side of the mode, then it is similar to utilize, merge, discern in coordination. The operation principle of this mechanism and Agent is extremely similar, this text has analysed that summarizes the difficulty brought toward pattern-recognition of mode, on the basis of the concept of the parameter of the preface while studying in coordination, provide the frame of pattern-recognition based on Agent APRF(Agent orientation Patten Recognition Frame).
  • Related Articles

    [1]Wu Jinjin, Liu Quan, Chen Song, Yan Yan. Averaged Weighted Double Deep Q-Network[J]. Journal of Computer Research and Development, 2020, 57(3): 576-589. DOI: 10.7544/issn1000-1239.2020.20190159
    [2]Zhu Fei, Wu Wen, Liu Quan, Fu Yuchen. A Deep Q-Network Method Based on Upper Confidence Bound Experience Sampling[J]. Journal of Computer Research and Development, 2018, 55(8): 1694-1705. DOI: 10.7544/issn1000-1239.2018.20180148
    [3]Yang Yatao, Zhang Yaze, Li Zichen, Zhang Fengjuan, Liu Boya. RAKA: New Authenticated Key Agreement Protocol Based on Ring-LWE[J]. Journal of Computer Research and Development, 2017, 54(10): 2187-2192. DOI: 10.7544/issn1000-1239.2017.20170477
    [4]Chen Junyu, Zhou Gang, Nan Yu, Zeng Qi. Semi-Supervised Local Expansion Method for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2016, 53(6): 1376-1388. DOI: 10.7544/issn1000-1239.2016.20148339
    [5]He Xianmang, Chen Yindong, Li Dong, Hao Yanni. Study on Semi-Homogenous Algorithm Based on Ring Generalization[J]. Journal of Computer Research and Development, 2015, 52(10): 2382-2394. DOI: 10.7544/issn1000-1239.2015.20150494
    [6]Yang Shilai, Yang Yahui, Shen Qingni, and Huang Haizhen. A Method of Intrusion Detection Based on Semi-Supervised GHSOM[J]. Journal of Computer Research and Development, 2013, 50(11): 2375-2382.
    [7]Li Yufeng, Huang Shengjun, and Zhou Zhihua. Regularized Semi-Supervised Multi-Label Learning[J]. Journal of Computer Research and Development, 2012, 49(6): 1272-1278.
    [8]Liu Tao, He Yanxiang, Xiong Qi. A Q-Learning Based Real-Time Mitigating Mechanism against LDoS Attack and Its Modeling and Simulation with CPN[J]. Journal of Computer Research and Development, 2011, 48(3): 432-439.
    [9]Chen Shaozhen, Wang Wenqiang, Peng Shujuan. Efficient AttributeBased Ring Signature Schemes[J]. Journal of Computer Research and Development, 2010, 47(12).
    [10]Yang Jian, Wang Jue, Zhong Ning. Laplacian Semi-Supervised Regression on a Manifold[J]. Journal of Computer Research and Development, 2007, 44(7): 1121-1127.

Catalog

    Article views (750) PDF downloads (483) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return