• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tan Liang, Meng Weiming, Zhou Mingtian. An Improved Direct Anonymous Attestation Scheme[J]. Journal of Computer Research and Development, 2014, 51(2): 334-343.
Citation: Tan Liang, Meng Weiming, Zhou Mingtian. An Improved Direct Anonymous Attestation Scheme[J]. Journal of Computer Research and Development, 2014, 51(2): 334-343.

An Improved Direct Anonymous Attestation Scheme

More Information
  • Published Date: February 14, 2014
  • DAA (direct anonymous attestation), which not only resolves the bottleneck of the privacy CA (certificate authority), but also realizes anonymous and attestation, is one of the best schemes among all attestation of identity schemes currently. But due to complexity and time-consuming of the original DAA scheme, the application of DAA scheme is hindered largely. A new improved direct anonymous attestation based on the discrete logarithm problem of elliptic curves is presented. The scheme still belongs to ECC(elliptic curve cryptography)-DAA, and the scheme’s process and framework are almost same as those of other schemes. But compared with other schemes, the scheme’s main operations are point addition and scalar multiplication of elliptic curves system, the whole complexity is largely decreased, and the scheme’s key and signature length are much shorter. Meanwhile, the scheme reduces the computational cost of each entity in Join protocol, Sign protocol and Verify algorithm, including TPM (trusted platform module), Host, Issuer, Verifier. It gives a practical solution to ECC-based TPM in protecting the privacy of the TPM. This paper gives a detailed security proof of the proposed scheme in ideal-system/real-system security model which shows that the scheme meets the security requirements of unforgeability, variable anonymity and unlinkability.
  • Related Articles

    [1]Zheng Wenping, Wu Zhikang, Yang Gui. A Novel Algorithm for Identifying Critical Nodes in Networks Based on Local Centrality[J]. Journal of Computer Research and Development, 2019, 56(9): 1872-1880. DOI: 10.7544/issn1000-1239.2019.20180831
    [2]Liu Haolin, Chi Jinlong, Deng Qingyong, Peng Xin, Pei Tingrui. Multi-Objective Evolutionary Sparse Recovery Approach Based on Adaptive Local Search[J]. Journal of Computer Research and Development, 2019, 56(7): 1420-1431. DOI: 10.7544/issn1000-1239.2019.20180557
    [3]Xu Zhengguo, Zheng Hui, He Liang, Yao Jiaqi. Self-Adaptive Clustering Based on Local Density by Descending Search[J]. Journal of Computer Research and Development, 2016, 53(8): 1719-1728. DOI: 10.7544/issn1000-1239.2016.20160136
    [4]Li Guilin, Yang Yuqi, Gao Xing, and Liao Minghong. Personalized Representation and Rank Algorithm for Enterprise Search Engines[J]. Journal of Computer Research and Development, 2014, 51(1): 206-214.
    [5]Li Shaohua, Feng Qilong, Wang Jianxin, and Chen Jianer. Kernelization for Weighted 3-Set Packing Problem[J]. Journal of Computer Research and Development, 2012, 49(8): 17811-786.
    [6]Li Wenjun, Wang Jianxin, and Chen Jianer. An Improved Parameterized Algorithm for Hyperplane-Cover Problem[J]. Journal of Computer Research and Development, 2012, 49(4): 804-811.
    [7]Wang Chuyang, Li Xiaoping, Wang Qian, Yuan Yingchun. A New Local Search Algorithm for No-Wait Fowshops with Setup Time[J]. Journal of Computer Research and Development, 2010, 47(4): 653-662.
    [8]Zhang Peng. Approximation Algorithms for Generalized Multicut in Trees[J]. Journal of Computer Research and Development, 2008, 45(7): 1195-1202.
    [9]Zeng Liping and Huang Wenqi. A New Local Search Algorithm for the Job Shop Scheduling Problem[J]. Journal of Computer Research and Development, 2005, 42(4): 582-587.
    [10]Yang Jinji, Su Kaile. Improvement of Local Research in SAT Problem[J]. Journal of Computer Research and Development, 2005, 42(1): 60-65.

Catalog

    Article views (810) PDF downloads (591) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return