• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xia Fei, Dou Yong, Xu Jiaqing, Zhang Yang. Fine-Grained Parallel Zuker Algorithm Accelerator with Storage Optimization on FPGA[J]. Journal of Computer Research and Development, 2011, 48(4): 709-719.
Citation: Xia Fei, Dou Yong, Xu Jiaqing, Zhang Yang. Fine-Grained Parallel Zuker Algorithm Accelerator with Storage Optimization on FPGA[J]. Journal of Computer Research and Development, 2011, 48(4): 709-719.

Fine-Grained Parallel Zuker Algorithm Accelerator with Storage Optimization on FPGA

More Information
  • Published Date: April 14, 2011
  • In the field of RNA secondary structure prediction, the Zuker algorithm is a most popular method using free energy minimization models. However, general-purpose computers including parallel computers or multi-core computers exhibit embarrassing efficiency of no more than 50%. FPGA chips provide a new approach to accelerate the Zuker algorithm by exploiting fine-grained custom design. The Zuker algorithm shows complicated data dependence, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic-like array including one master PE and multiple slave PEs for fine-grained hardware implementation on FPGA. We partition tasks by columns and assign tasks to PEs for load balance. We exploit data reuse schemes to reduce the need to load matrix from external memory by a sliding triangle window cache and transferring local elements to adjoining PEs. We also propose several methods, fitting curves with linear function, replacing scattered points with register constants, compressing address space and shortening data length to greatly reduce energy parameter tables by more than 85%. The experimental results show a factor of 18x speedup over the ViennaRNA-1.6.5 software for 2981-residue RNA sequence running on a PC platform with AMD Phenom 9650 Quad CPU, however the power consumption of our FPGA accelerator is only about 20% of the latter.
  • Related Articles

    [1]Ren Jiadong, Liu Xinqian, Wang Qian, He Haitao, Zhao Xiaolin. An Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575. DOI: 10.7544/issn1000-1239.2019.20180063
    [2]Liu Lu, Zuo Wanli, Peng Tao. Tensor Representation Based Dynamic Outlier Detection Method in Heterogeneous Network[J]. Journal of Computer Research and Development, 2016, 53(8): 1729-1739. DOI: 10.7544/issn1000-1239.2016.20160178
    [3]Zhao Xingwang, Liang Jiye. An Attribute Weighted Clustering Algorithm for Mixed Data Based on Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(5): 1018-1028. DOI: 10.7544/issn1000-1239.2016.20150131
    [4]Huang Tianqiang, Yu Yangqiang, Guo Gongde, Qin Xiaolin. Trajectory Outlier Detection Based on Semi-Supervised Technology[J]. Journal of Computer Research and Development, 2011, 48(11): 2074-2082.
    [5]Zhang Jing, Sun Zhihui, Yang Ming, Ni Weiwei, Yang Yidong. Fast Incremental Outlier Mining Algorithm Based on Grid and Capacity[J]. Journal of Computer Research and Development, 2011, 48(5): 823-830.
    [6]Yu Hao, Wang Bin, Xiao Gang, Yang Xiaochun. Distance-Based Outlier Detection on Uncertain Data[J]. Journal of Computer Research and Development, 2010, 47(3): 474-484.
    [7]Ni Weiwei, Chen Geng, Lu Jieping, Wu Yingjie, Sun Zhihui. Local Entropy Based Weighted Subspace Outlier Mining Algorithm[J]. Journal of Computer Research and Development, 2008, 45(7): 1189-1194.
    [8]Jin Yifu, Zhu Qingsheng, Xing Yongkang. An Algorithm for Clustering of Outliers Based on Key Attribute Subspace[J]. Journal of Computer Research and Development, 2007, 44(4): 651-659.
    [9]Ni Weiwei, Lu Jieping, Chen Geng, and Sun Zhihui. An Efficient Data Stream Outliers Detection Algorithm Based on k-Means Partitioning[J]. Journal of Computer Research and Development, 2006, 43(9): 1639-1643.
    [10]Yang Yidong, Sun Zhihui, Zhang Jing. Finding Outliers in Distributed Data Streams Based on Kernel Density Estimation[J]. Journal of Computer Research and Development, 2005, 42(9): 1498-1504.

Catalog

    Article views (821) PDF downloads (433) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return