• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Shao Chao, Huang Houkuan. A New Data Visualization Algorithm Based on ISOMAP[J]. Journal of Computer Research and Development, 2007, 44(7): 1137-1143.
Citation: Shao Chao, Huang Houkuan. A New Data Visualization Algorithm Based on ISOMAP[J]. Journal of Computer Research and Development, 2007, 44(7): 1137-1143.

A New Data Visualization Algorithm Based on ISOMAP

More Information
  • Published Date: July 14, 2007
  • As a nonlinear extension of the classical MDS algorithm, ISOMAP is suitable to visualize nonlinear low-dimensional manifolds embedded in high-dimensional spaces. However, ISOMAP requires that the data belong to a single well-sampled cluster. When the data consists of multiple clusters, long geodesic distances may be badly approximated by the corresponding shortest path lengths, which makes the classical MDS algorithm used in ISOMAP unsuitable. Besides, the success of ISOMAP depends greatly on being able to choose a suitable neighborhood size; however, it's difficult to choose a suitable neighborhood size efficiently. When the neighborhood size is unsuitable, shortcut edges are introduced into the neighborhood graph so that the neighborhood graph cannot represent the right neighborhood structure of the data. To solve the above problems, a new variant of ISOMAP, i.e., GISOMAP, is presented, which uses a special case of MDS to reduce the influence of long geodesic distances and shortcut edges on distance preservation to a certain extent. Consequently, GISOMAP can visualize the data which consists of multiple clusters better than ISOMAP, and can also be less sensitive to the neighborhood size than ISOMAP, which makes GISOMAP be applied more easily than ISOMAP. Finally, the feasibility of GISOMAP can be verified by experimental results well.
  • Related Articles

    [1]Ding Xue’er, Niu Jun, Zhang Kaile, Mao Xinyi. Code Search Method Based on the Reachability Analysis of Petri Nets[J]. Journal of Computer Research and Development, 2022, 59(1): 236-250. DOI: 10.7544/issn1000-1239.20200586
    [2]Sun Ji'nan, Huang Yu, Huang Shuzhi, Zhang Shikun, Yuan Chongyi. Formal Method Based on Petri Nets to Detect RFID Event[J]. Journal of Computer Research and Development, 2012, 49(11): 2334-2343.
    [3]Zhou Hang, Huang Zhiqiu, Zhu Yi, Xia Liang, Liu Linyuan. Real-Time Systems Contact Checking and Resolution Based on Time Petri Net[J]. Journal of Computer Research and Development, 2012, 49(2): 413-420.
    [4]Zhou Hang, Huang Zhiqiu, Hu Jun, Zhu Yi. Real-Time System Resource Conflict Checking Based on Time Petri Nets[J]. Journal of Computer Research and Development, 2009, 46(9): 1578-1585.
    [5]Zhao Mingfeng, Song Wen, Yang Yixian. Confusion Detection Based on Petri-Net[J]. Journal of Computer Research and Development, 2008, 45(10): 1631-1637.
    [6]Cui Huanqing and Wu Zhehui. Structural Properties of Parallel Program's Petri Net Model[J]. Journal of Computer Research and Development, 2007, 44(12): 2130-2135.
    [7]Zhang Guangsheng, Jiang Changjun, Ding Zhijun. Service Discovery Framework Using Fuzzy Petri Net[J]. Journal of Computer Research and Development, 2006, 43(11): 1886-1894.
    [8]Lao Songyang, Huang Guanglian, Alan F. Smeaton, Gareth J. F. Jones, Hyowon Lee. A Query Description Model of Soccer Video Based on BSU Composite Petri-Net[J]. Journal of Computer Research and Development, 2006, 43(1): 159-168.
    [9]Li Botao and Luo Junzhou. Modeling and Analysis of Non-Repudiation Protocols by Using Petri Nets[J]. Journal of Computer Research and Development, 2005, 42(9): 1571-1577.
    [10]Jiang Hao and Dong Yisheng. A Time Performance Evaluation Method for Workflow Based on Extended Timed Petri Net[J]. Journal of Computer Research and Development, 2005, 42(5): 849-855.

Catalog

    Article views (767) PDF downloads (537) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return