• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yong, Li Jianzhong, and Zhu Jinghua. A Novel Graph Classification Approach Based on Frequent Closed Emerging Patterns[J]. Journal of Computer Research and Development, 2007, 44(7): 1169-1176.
Citation: Liu Yong, Li Jianzhong, and Zhu Jinghua. A Novel Graph Classification Approach Based on Frequent Closed Emerging Patterns[J]. Journal of Computer Research and Development, 2007, 44(7): 1169-1176.

A Novel Graph Classification Approach Based on Frequent Closed Emerging Patterns

More Information
  • Published Date: July 14, 2007
  • Currently, data mining techniques have been widely applied in various business and financial fields. The success of data mining techniques in these fields has sparked an interest of applying such analysis techniques to various scientific and engineering fields, such as chemistry, biology and structural mechanism. However, datasets arising in scientific and engineering fields tend to have a strong topological, geometric, and/or relational nature. Most of the existing data mining algorithms can not be directly applied since they usually assume that data can be described either as a set of transactions or as multi-dimensional vectors. As a general data structure, graph model can be used to model complicated relationships among data and has been extensively used in various scientific and engineering fields. So, developing efficient graph-based mining algorithms has become a hot research topic in the data mining community in recent years. Graph classification is an important research branch in graph mining. In this paper, a novel graph classification approach based on frequent closed emerging patterns, called CEP, is proposed. It first mines frequent closed graph patterns in the graph dataset, then obtains emerging patterns from the set of closed graph patterns, and finally constructs classification rules based on emerging patterns. Experimental results show that CEP can achieve better classification performance than the current state-of-the-art graph classification approaches when applied for classifying chemical compounds. Furthermore, classification rules generated by CEP can be easily understood and exploited by domain experts.
  • Related Articles

    [1]Sun Hao, Han Zhongyi, Wang Fan, Yin Yilong. Backward Pseudo-Label and Optimal Transport for Unsupervised Domain Adaptation[J]. Journal of Computer Research and Development, 2023, 60(8): 1696-1710. DOI: 10.7544/issn1000-1239.202330163
    [2]Zhu Hongrui, Yuan Guojun, Yao Chengji, Tan Guangming, Wang Zhan, Hu Zhongzhe, Zhang Xiaoyang, An Xuejun. Survey on Network of Distributed Deep Learning Training[J]. Journal of Computer Research and Development, 2021, 58(1): 98-115. DOI: 10.7544/issn1000-1239.2021.20190881
    [3]Liu Hui, Xu Jinlong, Zhao Rongcai, Yao Jinyang. Compiler Optimization Sequence Selection Method Based on Learning Model[J]. Journal of Computer Research and Development, 2019, 56(9): 2012-2026. DOI: 10.7544/issn1000-1239.2019.20180789
    [4]Hai Mo, Zhu Jianming. A Propagation Mechanism Combining an Optimal Propagation Path and Incentive in Blockchain Networks[J]. Journal of Computer Research and Development, 2019, 56(6): 1205-1218. DOI: 10.7544/issn1000-1239.2019.20180419
    [5]Liu Song, Wu Weiguo, Zhao Bo, Jiang Qing. Loop Tiling for Optimization of Locality and Parallelism[J]. Journal of Computer Research and Development, 2015, 52(5): 1160-1176. DOI: 10.7544/issn1000-1239.2015.20131387
    [6]Zhang Zhuhong, Tao Juan. Micro-Immune Optimization Approach Solving Nonlinear Interval Number Programming[J]. Journal of Computer Research and Development, 2014, 51(12): 2633-2643. DOI: 10.7544/issn1000-1239.2014.20131091
    [7]Zhou Anfu, Liu Min, and Li Zhongcheng. Study on Optimal Packet Dispersion Strategy[J]. Journal of Computer Research and Development, 2009, 46(4): 541-548.
    [8]Liu Chun'an, Wang Yuping. Dynamic Multi-Objective Optimization Evolutionary Algorithm Based on New Model[J]. Journal of Computer Research and Development, 2008, 45(4): 603-611.
    [9]Yu Kun, Wu Guoxin, Xu Libo, Wu Peng. Optimal Path Based Geographic Routing in Ad Hoc Networks[J]. Journal of Computer Research and Development, 2007, 44(12): 2004-2011.
    [10]Ma Ming, Zhou Chunguang, Zhang Libiao, Ma Jie. Fuzzy Neural Network Optimization by a Multi-Objective Particle Swarm Optimization Algorithm[J]. Journal of Computer Research and Development, 2006, 43(12): 2104-2109.

Catalog

    Article views (663) PDF downloads (504) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return