• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zheng Jinhua, Li Ke, Li Miqing, and Wen Shihua. Adaptive Neighbor Multi-Objective Evolutionary Algorithm Based on Hypervolume Indicator[J]. Journal of Computer Research and Development, 2012, 49(2): 312-326.
Citation: Zheng Jinhua, Li Ke, Li Miqing, and Wen Shihua. Adaptive Neighbor Multi-Objective Evolutionary Algorithm Based on Hypervolume Indicator[J]. Journal of Computer Research and Development, 2012, 49(2): 312-326.

Adaptive Neighbor Multi-Objective Evolutionary Algorithm Based on Hypervolume Indicator

More Information
  • Published Date: February 14, 2012
  • There are two key factors in designing multi-objective evolutionary algorithms (MOEAs). One is how to ensure the evolutionary procedure approaches to the Pareto optimal solutions set, and the other is how to obtain well distributed solutions set. A tree neighbor containing the relation which represents the close degree of individuals is defined. Along with the Pareto dominance relationship, a density estimation metric—neighbor tree density is proposed to assign the fitness. In order to save the computational cost, a novel algorithm to calculate the exclusive hypervolume indicator is proposed. It is enough to calculate once (similar methods normally need to calculate twice) when evaluating an individuals contribution to total hypervolume. Moreover, if the size of external population exceeds the predefined threshold, the individual which contributes least to the exclusive hypervolume indicator will be eliminated. Based on all of these, an adaptive neighbor multi-objective evolutionary algorithm based on Hypervolume indicator (ANMOEA/HI) is proposed. In order to verify the efficiency of our proposed algorithm, it is tested with other 3 state-of-the-art MOEAs on 7 test problems. Four different kinds of metrics are used to give a fair judgment on their performances. Experimental results demonstrate that the proposed ANMOEA/HI obtains good performance in both convergence and distribution.
  • Related Articles

    [1]Ding Xuyang, Xie Ying, Zhang Xiaosong. Evolutionary Multi-Objective Optimization Image Steganography Based on Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(11): 2260-2270. DOI: 10.7544/issn1000-1239.2020.20200437
    [2]Li Li, Wang Wanliang, Xu Xinli, Li Weikun. Multi-Objective Particle Swarm Optimization Based on Grid Ranking[J]. Journal of Computer Research and Development, 2017, 54(5): 1012-1023. DOI: 10.7544/issn1000-1239.2017.20160074
    [3]Zhang Shiwen, Li Zhiyong, Chen Shaomiao, and Li Renfa. Dynamic Multi-Objective Optimization Algorithm Based on Ecological Strategy[J]. Journal of Computer Research and Development, 2014, 51(6): 1313-1330.
    [4]Liu Hailin, Gu Fangqing, Cheung Yiuming. A Weight Design Method Based on Power Transformation for Multi-Objective Evolutionary Algorithm MOEA/D[J]. Journal of Computer Research and Development, 2012, 49(6): 1264-1271.
    [5]Zhang Dongmei, Gong Xiaosheng, and Dai Guangming. Multi-Objective Evolutionary Algorithm for Principal Curve Model Based on Multifractal[J]. Journal of Computer Research and Development, 2011, 48(9): 1729-1739.
    [6]Huo Weigang, Shao Xiuli. A Fuzzy Associative Classification Method Based on Multi-Objective Evolutionary Algorithm[J]. Journal of Computer Research and Development, 2011, 48(4): 567-575.
    [7]Gong Maoguo, Cheng Gang, Jiao Licheng, and Liu Chao. Nondominated Individual Selection Strategy Based on Adaptive Partition for Evolutionary Multi-Objective Optimization[J]. Journal of Computer Research and Development, 2011, 48(4): 545-557.
    [8]Li Miqing, Zheng Jinhua, and Luo Biao. A Multi-Objective Evolutionary Algorithm Based on Minimum Spanning Tree[J]. Journal of Computer Research and Development, 2009, 46(5): 803-813.
    [9]Liu Chun'an, Wang Yuping. Dynamic Multi-Objective Optimization Evolutionary Algorithm Based on New Model[J]. Journal of Computer Research and Development, 2008, 45(4): 603-611.
    [10]Zhang Libiao, Zhou Chunguang, Ma Ming, and Sun Caitang. A Multi-Objective Differential Evolution Algorithm Based on Max-Min Distance Density[J]. Journal of Computer Research and Development, 2007, 44(1): 177-184.

Catalog

    Article views (1501) PDF downloads (946) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return