• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xiong Jinzhi, Yuan Huaqiang, Peng Hong. A General Formulation of Polynomial Smooth Support Vector Machines[J]. Journal of Computer Research and Development, 2008, 45(8): 1346-1353.
Citation: Xiong Jinzhi, Yuan Huaqiang, Peng Hong. A General Formulation of Polynomial Smooth Support Vector Machines[J]. Journal of Computer Research and Development, 2008, 45(8): 1346-1353.

A General Formulation of Polynomial Smooth Support Vector Machines

More Information
  • Published Date: August 14, 2008
  • Yuan et al. used a polynomial function as smoothing function, and proposed a polynomial smooth support vector machine (PSSVM) in 2005, which improved the performance and efficiency of SVM for classification. Using the technique of interpolation functions, Xiong et al. developed a recursive formula to obtain a new class of smoothing functions, and solved the problems of existence and seeking better smoothing functions in 2007. However, problems still exist in looking for other smooth models and the general formulation of the polynomial smooth support vector machines. A class of polynomial functions is applied as new smoothing functions, and a dth-order polynomial smooth support vector machine (dPSSVM) is proposed using the smoothing technique, which is a general formulation of polynomial smooth support vector machines. The global convergence of dPSSVM is proved by a mathematical inductive method, and experiments are carried out to evaluate dPSSVM. The numerical results show that the performance and efficiency of dPSSVM are best, and better than that of the PSSVM when its smooth order is 3, but after its smooth order is greater than 3, the performance of classification is almost the same while the efficiency becomes worse. The problem of general formulation is successfully solved for polynomial smooth support vector machines.
  • Related Articles

    [1]Ren Wei, Wang Zhigang, Yang Hua, Zhang Yisheng, Chen Ming. NeuroSymbolic Task and Motion Planner for Disassembly Electric Vehicle Batteries[J]. Journal of Computer Research and Development, 2021, 58(12): 2604-2617. DOI: 10.7544/issn1000-1239.2021.20211002
    [2]Song Chuanming, Min Xin, Xie Weidong, Yin Baocai, Wang Xianghai. Elastic Motion Estimation Algorithm Using Two-Bit-Depth Pixels[J]. Journal of Computer Research and Development, 2019, 56(11): 2469-2484. DOI: 10.7544/issn1000-1239.2019.20180699
    [3]LiFeng, PanJingkui. Human Motion Recognition Based on Triaxial Accelerometer[J]. Journal of Computer Research and Development, 2016, 53(3): 621-631. DOI: 10.7544/issn1000-1239.2016.20148159
    [4]Liu Weibin, Liu Xingqi, Xing Weiwei, Yuan Baozong. Improving Motion Synthesis by Semantic Control[J]. Journal of Computer Research and Development, 2011, 48(7): 1255-1262.
    [5]Xia Shihong, Wei Yi, and Wang Zhaoqi. A Survey of Physics-Based Human Motion Simulation[J]. Journal of Computer Research and Development, 2010, 47(8): 1354-1361.
    [6]Zong Dan, Li Chunpeng, Xia Shihong, Wang Zhaoqi. Key-Postures Based Automated Construction of Motion Graph[J]. Journal of Computer Research and Development, 2010, 47(8): 1321-1328.
    [7]Zhang Zhixian, Liu Jianhua, and Ning Ruxin. Research on Motion Simulation Realization Technology of Planar Linkage Based on Virtual Environment[J]. Journal of Computer Research and Development, 2010, 47(6): 979-987.
    [8]Yang Yuedong, Wang Lili, and Hao Aimin. Motion String: A Motion Capture Data Representation for Behavior Segmentation[J]. Journal of Computer Research and Development, 2008, 45(3): 527-534.
    [9]Zhao Guoying, Li Zhenbo, Deng Yu, Li Hua. Human Motion Recognition and Simulation Based on Retrieval[J]. Journal of Computer Research and Development, 2006, 43(2): 368-373.
    [10]Wang Zhaoqi, Zhang Yongdong, and Xia Shihong. 3D Human Motion Simulation and a Video Analysis System for Sports Training[J]. Journal of Computer Research and Development, 2005, 42(2).

Catalog

    Article views (850) PDF downloads (698) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return