• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Peng Zewu, Tang Yong, Luo Haixia, Pan Yan. Supervised and Transductive Ranking Algorithms with Relational Objects[J]. Journal of Computer Research and Development, 2012, 49(6): 1256-1263.
Citation: Peng Zewu, Tang Yong, Luo Haixia, Pan Yan. Supervised and Transductive Ranking Algorithms with Relational Objects[J]. Journal of Computer Research and Development, 2012, 49(6): 1256-1263.

Supervised and Transductive Ranking Algorithms with Relational Objects

More Information
  • Published Date: June 14, 2012
  • Learning to rank task is a learning process which aims at obtaining a ranking model through machine learning techniques for ranking objects. It has become one of the hot research topics in both information retrieval and machine learning communities recently. In information retrieval and machine learning fields, most of existing learning to rank approaches assume that all objects in a given query are independently and identically distributed. Although this assumption simplifies the ranking problems, the implicit interconnections among objects for each query are not exploited in the learning process. Actually, the information of the implicit interconnections can help improve the ranking performance of the ranking algorithms. In this paper, new methods are proposed in supervised ranking and transductive ranking problems to utilize the latent interconnections. In supervised ranking, a graph based ranking framework is proposed, which takes advantage of global consistency that similar objects deserve similar scores. In transductive ranking, a new query similarity measure by the interconnections among the objects is proposed, such that the more representative objects are, the more importance weighting are obtained for them. Finally, this paper validates the usefulness of relational information among objects by improving the performances of RankSVM-primal algorithm and transductive ranking algorithm in the experiments.
  • Related Articles

    [1]Zhou Peng, Wu Yanjun, Zhao Chen. A Programming Paradigm Combining Programmer and Neural Network to Promote Automated Program Generation[J]. Journal of Computer Research and Development, 2021, 58(3): 638-650. DOI: 10.7544/issn1000-1239.2021.20200298
    [2]Dai Wangzhou, Zhou Zhihua. A Survey on Inductive Logic Programming[J]. Journal of Computer Research and Development, 2019, 56(1): 138-154. DOI: 10.7544/issn1000-1239.2019.20180759
    [3]Chen Donghuo, Liu Quan, Jin Haidong, Zhu Fei, Wang Hui. A Temporal Logic with a Semantics Defined on the Static Structure and Dynamic Behavior of Program[J]. Journal of Computer Research and Development, 2016, 53(9): 2067-2084. DOI: 10.7544/issn1000-1239.2016.20150370
    [4]Duan Zhao, Tian Cong, Duan Zhenhua. CEGAR Based Null-Pointer Dereference Checking in C Programs[J]. Journal of Computer Research and Development, 2016, 53(1): 155-164. DOI: 10.7544/issn1000-1239.2016.20150669
    [5]Zhang Zhitian, Li Zhaopeng, Chen Yiyun, and Liu Gang. An Automatic Program Verifier for PointerC: Design and Implementation[J]. Journal of Computer Research and Development, 2013, 50(5): 1044-1054.
    [6]Chen Qiaoqiao, Li Bixin, and Ji Shunhui. A Modeling and Verification Method of CPS Based on Differential-Algebraic Dynamic Logic[J]. Journal of Computer Research and Development, 2013, 50(4): 700-710.
    [7]Wang Changjing. Verifying the Correctness of Loop Optimization Based on Extended Logic Transformation System μTS[J]. Journal of Computer Research and Development, 2012, 49(9): 1863-1873.
    [8]Ma Peijun, Wang Tiantian, and Su Xiaohong. Automatic Grading of Student Programs Based on Program Understanding[J]. Journal of Computer Research and Development, 2009, 46(7): 1136-1142.
    [9]Lin Jiao, Chen Wenguang, Li Qiang, Zheng Weimin, Zhang Yimin. A New Data Clustering Algorithm for Parallel Whole-Genome Shotgun Sequence Assembly[J]. Journal of Computer Research and Development, 2006, 43(8): 1323-1329.
    [10]Sui Aina, Wu Wei, Chen Xiaowu, Zhao Qinping. A Assembly Constraint Semantic Model in Distributed Virtual Environment[J]. Journal of Computer Research and Development, 2006, 43(3): 542-550.

Catalog

    Article views (785) PDF downloads (528) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return