• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Zhiguang, Xiao Nong, Liu Fang, and Du Yimo. A High Performance Reliable Storage System Using HDDs as the Backup of SSDs[J]. Journal of Computer Research and Development, 2013, 50(1): 80-89.
Citation: Chen Zhiguang, Xiao Nong, Liu Fang, and Du Yimo. A High Performance Reliable Storage System Using HDDs as the Backup of SSDs[J]. Journal of Computer Research and Development, 2013, 50(1): 80-89.

A High Performance Reliable Storage System Using HDDs as the Backup of SSDs

More Information
  • Published Date: January 14, 2013
  • SSD (solid state drive) has been widely deployed due to its high performance. But, its cost and reliability have not met the demand of large-scale storage systems. RAID (redundant arrays of inexpensive disks) is a conventional scheme to enhance reliability. However, existing RAID schemes are not effective for SSDs anymore. Instead, we propose a hybrid array consisting of SSDs and HDDs (hard disk drive): SSDs are used for responding to I/O requests, and HDDs supply backup for SSDs. The hybrid array guarantees both performance and reliability at a reasonable cost. However, HDDs lose to SSDs in term of both latency and bandwidth. Therefore, we employ a nonvolatile memory to bridge the latency gap, and take other two measures to improve HDD’s bandwidth. Firstly, workloads within an HDD are reconfigured to be more sequential. Secondly, multiple HDDs collaborate with each other to supply much higher aggregate bandwidth. By these ways, HDDs can replicate SSDs’ data in time. We implement a prototype to evaluate the proposed array. First of all, we demonstrate that the hybrid array is feasible. Then, we compare the hybrid array with other solutions. Experimental results show that the hybrid array covers both performance and reliability, and is also cost-effective.
  • Related Articles

    [1]Li Xiangyang, Shang Fei, Yan Yubo, Wang Shanyue, Han Feiyu, Chi Guoxuan, Yang Zheng, Chen Xiaojiang. Survey on Low Power Sensing of AIoT[J]. Journal of Computer Research and Development, 2024, 61(11): 2754-2775. DOI: 10.7544/issn1000-1239.202440396
    [2]Zhang Yiwen, Guo Ruifeng, Deng Changyi. Low Power Scheduling Algorithm for Mix Tasks Based on Constant Bandwidth Server[J]. Journal of Computer Research and Development, 2015, 52(9): 2094-2104. DOI: 10.7544/issn1000-1239.2015.20140611
    [3]Li Yibin, Jia Zhiping, Xie Shuai, and Liu Fucai. Partial Dynamic Reconfigurable WSN Node with Power and Area Efficiency[J]. Journal of Computer Research and Development, 2014, 51(1): 173-179.
    [4]Qi Shubo, Li Jinwen, Yue Daheng, Zhao Tianlei, and Zhang Minxuan. Adaptive Buffer Management for Leakage Power Optimization in NoC Routers[J]. Journal of Computer Research and Development, 2011, 48(12): 2400-2409.
    [5]Liu Zhenglin, Han Yu, Zou Xuecheng, and ChenYicheng. Power Analysis Attacks Against AES Based on Maximal Bias Signal[J]. Journal of Computer Research and Development, 2009, 46(3): 370-376.
    [6]Zhou Hongwei, Zhang Chengyi, and Zhang Minxuan. A Method of Statistics-Based Cache Leakage Power Estimation[J]. Journal of Computer Research and Development, 2008, 45(2): 367-374.
    [7]Wen Dongxin, Yang Xiaozong, and Wang Ling. A High Level Synthesis Scheme and Its Realization for Low Power Design in VLSI[J]. Journal of Computer Research and Development, 2007, 44(7): 1259-1264.
    [8]Zhao Jia, Zeng Xiaoyang, Han Jun, Wang Jing, and Chen Jun. VLSI Implementation of an AES Algorithm Resistant to Differential Power Analysis Attack[J]. Journal of Computer Research and Development, 2007, 44(3).
    [9]Wang Wei, Han Yinhe, Hu Yu, Li Xiaowei, Zhang Yousheng. An Effective Low-Power Scan Architecture—PowerCut[J]. Journal of Computer Research and Development, 2007, 44(3).
    [10]Ma Zhiqiang, Ji Zhenzhou, and Hu Mingzeng. A Low-Power Instruction Cache Design Based on Record Buffer[J]. Journal of Computer Research and Development, 2006, 43(4): 744-751.

Catalog

    Article views (1063) PDF downloads (730) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return