• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Kai, Huang Houkuan. A Selective Approach to Neural Network Ensemble Based on Clustering Technology[J]. Journal of Computer Research and Development, 2005, 42(4): 594-598.
Citation: Li Kai, Huang Houkuan. A Selective Approach to Neural Network Ensemble Based on Clustering Technology[J]. Journal of Computer Research and Development, 2005, 42(4): 594-598.

A Selective Approach to Neural Network Ensemble Based on Clustering Technology

More Information
  • Published Date: April 14, 2005
  • A neural network ensemble is a very popular learning paradigm where the outputs of a set of separately trained neural network are combined to form one unified p rediction. To improve the effectiveness of ensemble, neural networks in the ense mble are not only highly correct but make their errors on different parts of the input space as well. However, most existing approaches ensemble all the availab le neural networks for prediction. In this paper, a selective approach to neural network ensemble based on clustering technology is presented. After individual neural networks are trained, the clustering algorithm is used to select a part o f the trained individual networks in order to reduce their similarity. Then many selected neural networks are combined. Experimental results show that this appr oach outperforms the traditional ones that ensemble all of the individual networ ks.
  • Related Articles

    [1]Ji Zhong, Nie Linhong. Texture Image Classification with Noise-Tolerant Local Binary Pattern[J]. Journal of Computer Research and Development, 2016, 53(5): 1128-1135. DOI: 10.7544/issn1000-1239.2016.20148320
    [2]Lu Daying, Zhu Dengming, Wang Zhaoqi. Texture-Based Multiresolution Flow Visualization[J]. Journal of Computer Research and Development, 2015, 52(8): 1910-1920. DOI: 10.7544/issn1000-1239.2015.20140417
    [3]Wang Huafeng, Wang Yuting, Chai Hua. State-of-the-Art on Texture-Based Well Logging Image Classification[J]. Journal of Computer Research and Development, 2013, 50(6): 1335-1348.
    [4]Zhong Hua,Yang Xiaoming, and Jiao Licheng. Texture Classification Based on Multiresolution Co-occurrence Matrix[J]. Journal of Computer Research and Development, 2011, 48(11): 1991-1999.
    [5]Xiong Changzhen, Huang Jing, Qi Dongxu. Irregular Patch for Texture Synthesis[J]. Journal of Computer Research and Development, 2007, 44(4): 701-706.
    [6]Li Jie, Zhu Weile, Wang Lei. Texture Recognition Using the Wold Model and Support Vector Machines[J]. Journal of Computer Research and Development, 2007, 44(3).
    [7]Xu Cunlu, Chen Yanqiu, Lu Hanqing. Statistical Landscape Features for Texture Retrieval[J]. Journal of Computer Research and Development, 2006, 43(4): 702-707.
    [8]Yang Gang, Wang Wencheng, Wu Enhua. Texture Synthesis by the Border Image[J]. Journal of Computer Research and Development, 2005, 42(12): 2118-2125.
    [9]Shang Zhaowei, Zhang Mingxin, Zhao Ping, Shen Junyi. Different Complex Wavelet Transforms for Texture Retrieval and Similarity Measure[J]. Journal of Computer Research and Development, 2005, 42(10): 1746-1751.
    [10]Zhang Yan, Li Wenhui, Meng Yu, and Pang Yunjie. Fast Texture Synthesis Algorithm Using PSO[J]. Journal of Computer Research and Development, 2005, 42(3).

Catalog

    Article views (727) PDF downloads (676) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return