• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Sun Jigui, Yin Minghao, Lü Shuai. JLU-RLAO and JLU-QLAO: Two Non-Deterministic Planners[J]. Journal of Computer Research and Development, 2009, 46(4): 667-675.
Citation: Sun Jigui, Yin Minghao, Lü Shuai. JLU-RLAO and JLU-QLAO: Two Non-Deterministic Planners[J]. Journal of Computer Research and Development, 2009, 46(4): 667-675.

JLU-RLAO and JLU-QLAO: Two Non-Deterministic Planners

More Information
  • Published Date: April 14, 2009
  • Classical decision-theoretic planning methods assume that the probabilistic model of the domain is always accurate. Unfortunately, for lack of information, sometimes planning modeling experts can only obtain incomplete quantitative information, or even ordinal, qualitative information for modeling the uncertainty about the world transition. Recently, LAO* has been proved to be one of the most efficient planners for solving probabilistic planning problems. Two algorithms, namely rLAO* algorithm and qLAO* algorithm, are introduced to solve non-deterministic planning problems without complete information based on LAO*. Specifically, rLAO* algorithm can solve planning problems under uncertainty with incomplete quantitative information, and qLAO* algorithm can solve planning problems under uncertainty with qualitative information. Both these two algorithms are proved to be sound and complete. Both algorithms have been implemented in the framework of two un-deterministic planners “JLU-RLAO” and “JLU-QLAO”, and compared with LAO* using a lot of benchmark problems. Experimental results show that both systems inherit the merits of excellent performance of LAO* for solving planning problems under uncertainty. Because JLU-RLAO and JLU-QLAO planners can solve planning problems under uncertainty with incomplete information, they can be regarded as complementary planners to LAO*.
  • Related Articles

    [1]Ji Zhong, Nie Linhong. Texture Image Classification with Noise-Tolerant Local Binary Pattern[J]. Journal of Computer Research and Development, 2016, 53(5): 1128-1135. DOI: 10.7544/issn1000-1239.2016.20148320
    [2]Lu Daying, Zhu Dengming, Wang Zhaoqi. Texture-Based Multiresolution Flow Visualization[J]. Journal of Computer Research and Development, 2015, 52(8): 1910-1920. DOI: 10.7544/issn1000-1239.2015.20140417
    [3]Wang Huafeng, Wang Yuting, Chai Hua. State-of-the-Art on Texture-Based Well Logging Image Classification[J]. Journal of Computer Research and Development, 2013, 50(6): 1335-1348.
    [4]Zhong Hua,Yang Xiaoming, and Jiao Licheng. Texture Classification Based on Multiresolution Co-occurrence Matrix[J]. Journal of Computer Research and Development, 2011, 48(11): 1991-1999.
    [5]Xiong Changzhen, Huang Jing, Qi Dongxu. Irregular Patch for Texture Synthesis[J]. Journal of Computer Research and Development, 2007, 44(4): 701-706.
    [6]Li Jie, Zhu Weile, Wang Lei. Texture Recognition Using the Wold Model and Support Vector Machines[J]. Journal of Computer Research and Development, 2007, 44(3).
    [7]Xu Cunlu, Chen Yanqiu, Lu Hanqing. Statistical Landscape Features for Texture Retrieval[J]. Journal of Computer Research and Development, 2006, 43(4): 702-707.
    [8]Yang Gang, Wang Wencheng, Wu Enhua. Texture Synthesis by the Border Image[J]. Journal of Computer Research and Development, 2005, 42(12): 2118-2125.
    [9]Shang Zhaowei, Zhang Mingxin, Zhao Ping, Shen Junyi. Different Complex Wavelet Transforms for Texture Retrieval and Similarity Measure[J]. Journal of Computer Research and Development, 2005, 42(10): 1746-1751.
    [10]Zhang Yan, Li Wenhui, Meng Yu, and Pang Yunjie. Fast Texture Synthesis Algorithm Using PSO[J]. Journal of Computer Research and Development, 2005, 42(3).

Catalog

    Article views (1424) PDF downloads (501) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return