• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Song Xiaohua, Ouyang Dantong. A Method of Combining Multi-Aspect Information for Qualitative Spatial Reasoning[J]. Journal of Computer Research and Development, 2011, 48(11): 2039-2046.
Citation: Song Xiaohua, Ouyang Dantong. A Method of Combining Multi-Aspect Information for Qualitative Spatial Reasoning[J]. Journal of Computer Research and Development, 2011, 48(11): 2039-2046.

A Method of Combining Multi-Aspect Information for Qualitative Spatial Reasoning

More Information
  • Published Date: November 14, 2011
  • Qualitative spatial reasoning has been an important context in the area of artificial intelligence. Spatial information includes topology, size, shape, distance, etc. Single-aspect spatial information has been studied for many years. But how to combine the single-aspect information in a frame for representation and reasoning is an important problem. In this paper, we propose a new method for combining multi-aspect information using an operation symbol which is called “combine”. By “combine” operator, one can represent new relations using the single-aspect relation set which is joint exclusive and pair-wise disjoint, and get the rough composition table very easily. Then we give two models. The first one combines the topology and size information and the second one combines the topology and far-near information. We propose a new concept called “neighborhood partition graph”, which could present the relationship among the atom relation in relation set which is joint exclusive and pair-wise disjoint. One can convert the neighborhood partition graph of a new model which combines multi-aspects information into its concept neighborhood graph very easily. We solve the problem proposed by Galton in 1994:“why the case of the line-of-sight relations differs interestingly from the standard spatial and temporal relations in that the result of composing two relations does not always form a conceptual neighborhood graph”.
  • Related Articles

    [1]Zhang Naizhou, Cao Wei, Zhang Xiaojian, Li Shijun. Conversation Generation Based on Variational Attention Knowledge Selection and Pre-trained Language Model[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440551
    [2]Wang Honglin, Yang Dan, Nie Tiezheng, Kou Yue. Attributed Heterogeneous Information Network Embedding with Self-Attention Mechanism for Product Recommendation[J]. Journal of Computer Research and Development, 2022, 59(7): 1509-1521. DOI: 10.7544/issn1000-1239.20210016
    [3]Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
    [4]Wei Zhenkai, Cheng Meng, Zhou Xiabing, Li Zhifeng, Zou Bowei, Hong Yu, Yao Jianmin. Convolutional Interactive Attention Mechanism for Aspect Extraction[J]. Journal of Computer Research and Development, 2020, 57(11): 2456-2466. DOI: 10.7544/issn1000-1239.2020.20190748
    [5]Chen Yanmin, Wang Hao, Ma Jianhui, Du Dongfang, Zhao Hongke. A Hierarchical Attention Mechanism Framework for Internet Credit Evaluation[J]. Journal of Computer Research and Development, 2020, 57(8): 1755-1768. DOI: 10.7544/issn1000-1239.2020.20200217
    [6]Li Mengying, Wang Xiaodong, Ruan Shulan, Zhang Kun, Liu Qi. Student Performance Prediction Model Based on Two-Way Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(8): 1729-1740. DOI: 10.7544/issn1000-1239.2020.20200181
    [7]Zhang Yingying, Qian Shengsheng, Fang Quan, Xu Changsheng. Multi-Modal Knowledge-Aware Attention Network for Question Answering[J]. Journal of Computer Research and Development, 2020, 57(5): 1037-1045. DOI: 10.7544/issn1000-1239.2020.20190474
    [8]Zhang Yixuan, Guo Bin, Liu Jiaqi, Ouyang Yi, Yu Zhiwen. app Popularity Prediction with Multi-Level Attention Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 984-995. DOI: 10.7544/issn1000-1239.2020.20190672
    [9]Liu Ye, Huang Jinxiao, Ma Yutao. An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging[J]. Journal of Computer Research and Development, 2020, 57(3): 461-473. DOI: 10.7544/issn1000-1239.2020.20190606
    [10]Zhang Zhichang, Zhang Zhenwen, Zhang Zhiman. User Intent Classification Based on IndRNN-Attention[J]. Journal of Computer Research and Development, 2019, 56(7): 1517-1524. DOI: 10.7544/issn1000-1239.2019.20180648
  • Cited by

    Periodical cited type(1)

    1. 郑章财,徐锋. 嵌入式服务器软件接口通信容量调节算法仿真. 计算机仿真. 2024(04): 265-269 .

    Other cited types(0)

Catalog

    Article views (648) PDF downloads (453) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return