• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Linlan, Tan Zhenyang, Shu Jian. Node Importance Estimation Method for Opportunistic Network Based on Graph Neural Networks[J]. Journal of Computer Research and Development, 2022, 59(4): 834-851. DOI: 10.7544/issn1000-1239.20200673
Citation: Liu Linlan, Tan Zhenyang, Shu Jian. Node Importance Estimation Method for Opportunistic Network Based on Graph Neural Networks[J]. Journal of Computer Research and Development, 2022, 59(4): 834-851. DOI: 10.7544/issn1000-1239.20200673

Node Importance Estimation Method for Opportunistic Network Based on Graph Neural Networks

Funds: This work was supported by the National Natural Science Foundation of China (62062050, 61962037) and the Natural Science Foundation of Jiangxi Province (20202BABL202039).
More Information
  • Published Date: March 31, 2022
  • Opportunistic network is a type of self-organized networks which uses the opportunity of a node moving to realize communication.Because of opportunistic communication mode, opportunistic network has observable time-varying and dynamic characteristics.The estimation of node importance is the key to study the information dissemination of opportunistic network.A novel node importance estimation method based on graph neural network (GNN-NIE) framework is proposed.Opportunistic network is sliced into opportunistic network units which is modeled by aggregate graph to present network information.The dynamic network embedding model is employed to extract the temporal and structural information among the opportunistic network units, so as to obtain the dynamic attribute features of each node in the network.Taking advantage of the GNN’s ability of extracting the features of graph data, the relationship between node dynamic attribute features and the node importance is achieved, so that the node importance of opportunistic network is estimated.The results on three real opportunistic network datasets MIT reality, Haggle project and Asturias-er show that compared with the temporal degree, temporal betweenness, temporal PageRank, and kshell-CN, the proposed method has faster propagation rate, larger message coverage and better SIR and NDCG@10 values.
  • Related Articles

    [1]Chen Yewang, Shen Lianlian, Zhong Caiming, Wang Tian, Chen Yi, Du Jixiang. Survey on Density Peak Clustering Algorithm[J]. Journal of Computer Research and Development, 2020, 57(2): 378-394. DOI: 10.7544/issn1000-1239.2020.20190104
    [2]Zhao Huihui, Zhao Fan, Chen Renhai, Feng Zhiyong. Efficient Index and Query Algorithm Based on Geospatial Big Data[J]. Journal of Computer Research and Development, 2020, 57(2): 333-345. DOI: 10.7544/issn1000-1239.2020.20190565
    [3]Xu Zhengguo, Zheng Hui, He Liang, Yao Jiaqi. Self-Adaptive Clustering Based on Local Density by Descending Search[J]. Journal of Computer Research and Development, 2016, 53(8): 1719-1728. DOI: 10.7544/issn1000-1239.2016.20160136
    [4]Gong Shufeng, Zhang Yanfeng. EDDPC: An Efficient Distributed Density Peaks Clustering Algorithm[J]. Journal of Computer Research and Development, 2016, 53(6): 1400-1409. DOI: 10.7544/issn1000-1239.2016.20150616
    [5]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [6]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [7]Liu Zhuo, Yang Yue, Zhang Jianpei, Yang Jing, Chu Yan, Zhang Zebao. An Adaptive Grid-Density Based Data Stream Clustering Algorithm Based on Uncertainty Model[J]. Journal of Computer Research and Development, 2014, 51(11): 2518-2527. DOI: 10.7544/issn1000-1239.2014.20130869
    [8]Xu Min, Deng Zhaohong, Wang Shitong, Shi Yingzhong. MMCKDE: m-Mixed Clustering Kernel Density Estimation over Data Streams[J]. Journal of Computer Research and Development, 2014, 51(10): 2277-2294. DOI: 10.7544/issn1000-1239.2014.20130718
    [9]Wang Ning, Li Jie. Two-Tiered Correlation Clustering Method for Entity Resolution in Big Data[J]. Journal of Computer Research and Development, 2014, 51(9): 2108-2116. DOI: 10.7544/issn1000-1239.2014.20131345
    [10]Xie Kunwu, Bi Xiaoling, and Ye Bin. Clustering Algorithm of High-Dimensional Data Based on Units[J]. Journal of Computer Research and Development, 2007, 44(9): 1618-1623.
  • Cited by

    Periodical cited type(5)

    1. 丁强龙,叶惠珠,袁弘强,李志新. 大规模时空轨迹数据连接查询效率优化实践. 计算机系统应用. 2024(05): 1-14 .
    2. 于平. 融合改进DBSCAN聚类和多种进化策略的改进蝗虫优化算法. 仪表技术与传感器. 2024(05): 98-105+112 .
    3. 王赟. 通信大数据安全监管平台的设计与实践. 湖南邮电职业技术学院学报. 2024(03): 8-13+19 .
    4. 李杰,李蓝青,曹帅,戴上. 基于改进灰狼算法优化和极限学习机的电网电力负荷预测. 微型电脑应用. 2024(11): 75-77+82 .
    5. 武晓朦,袁榕泽,李英量,朱琦. 基于新冠病毒群体免疫算法的有源配电网优化调度. 系统仿真学报. 2023(12): 2692-2702 .

    Other cited types(8)

Catalog

    Article views (395) PDF downloads (219) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return