• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fan Wei, Liu Yong. Social Network Information Diffusion Prediction Based on Spatial-Temporal Transformer[J]. Journal of Computer Research and Development, 2022, 59(8): 1757-1769. DOI: 10.7544/issn1000-1239.20220064
Citation: Fan Wei, Liu Yong. Social Network Information Diffusion Prediction Based on Spatial-Temporal Transformer[J]. Journal of Computer Research and Development, 2022, 59(8): 1757-1769. DOI: 10.7544/issn1000-1239.20220064

Social Network Information Diffusion Prediction Based on Spatial-Temporal Transformer

Funds: This work was supported by the National Natural Science Foundation of China (61972135, 61602159), the Natural Science Foundation of Heilongjiang Province (LH2020F043), and the Innovation Talents Project of Science and Technology Bureau of Harbin (2017RAQXJ094).
More Information
  • Published Date: July 31, 2022
  • With the increasing popularity and wide application of social networks, information diffusion prediction has gradually become a hot research topic in the field of social network analysis. Most previous studies either only use the information diffusion sequence or only use the social network between users to make prediction, failing to effectively model the complexity of the information diffusion process. In addition, recurrent neural network (RNN) and its variants, which are commonly used in information diffusion prediction, are difficult to capture the correlation between information effectively. To address the above problems, we propose a novel social network information diffusion prediction model called STT based on spatial-temporal Transformer. First, we construct a heterogeneous graph composed of a social network graph and a dynamic diffusion graph, and use graph convolutional network (GCN) to learn the users’ structural features. Then, the users’ temporal features and structural features are put into the Transformer for fusion to obtain users’ spatial-temporal features. In order to effectively fuse the users’ temporal features and structural features, a novel residual fusion method is proposed to replace the original residual connection in Transformer. Finally, the Transformer is used for information diffusion prediction. Extensive experiments on real datasets demonstrate the effectiveness of our proposed model STT.
  • Related Articles

    [1]Wang Zhenyan, Jiang Shengcheng, Song Qihong, Liu Bo, Bi Xiuli, Xiao Bin. Transformer-Based Image Restoration Method for Cultural Relics[J]. Journal of Computer Research and Development, 2024, 61(3): 748-761. DOI: 10.7544/issn1000-1239.202220623
    [2]Liu Linlan, Feng Zhenxing, Shu Jian. Dynamic Network Link Prediction Based on Sequential Graph Convolution[J]. Journal of Computer Research and Development, 2024, 61(2): 518-528. DOI: 10.7544/issn1000-1239.202220776
    [3]Liu Leyuan, Dai Yurou, Cao Yanan, Zhou Fan. Survey of User Geographic Location Prediction Based on Online Social Network[J]. Journal of Computer Research and Development, 2024, 61(2): 385-412. DOI: 10.7544/issn1000-1239.202220417
    [4]Jin Xin, Wu Bingyang, Liu Fangyue, Zhang Zili, Jia Yunshan. Exploiting Temporal-Spatial Characteristics for Function Scheduling in Serverless Computing[J]. Journal of Computer Research and Development, 2023, 60(9): 2000-2014. DOI: 10.7544/issn1000-1239.202330410
    [5]Ni Qingjian, Peng Wenqiang, Zhang Zhizheng, Zhai Yuqing. Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on Information Enhanced Transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293. DOI: 10.7544/issn1000-1239.20210901
    [6]Zhou Hang, Zhan Yongzhao, Mao Qirong. Video Anomaly Detection Based on Space-Time Fusion Graph Network Learning[J]. Journal of Computer Research and Development, 2021, 58(1): 48-59. DOI: 10.7544/issn1000-1239.2021.20200264
    [7]Chen Shanjing, Xiang Chaocan, Kang Qing, Wu Tao, Liu Kai, Feng Liang, Deng Tao. Multi-Source Remote Sensing Based Accurate Landslide Detection Leveraging Spatial-Temporal-Spectral Feature Fusion[J]. Journal of Computer Research and Development, 2020, 57(9): 1877-1887. DOI: 10.7544/issn1000-1239.2020.20190582
    [8]Liu Peizhong, Wang Hongxiang, Luo Yanmin, Du Yongzhao. Online Convolutional Network Tracking via Spatio-Temporal Context[J]. Journal of Computer Research and Development, 2018, 55(12): 2785-2793. DOI: 10.7544/issn1000-1239.2018.20170327
    [9]Zhou Donghao, Han Wenbao, Wang Yongjun. A Fine-Grained Information Diffusion Model Based on Node Attributes and Content Features[J]. Journal of Computer Research and Development, 2015, 52(1): 156-166. DOI: 10.7544/issn1000-1239.2015.20130915
    [10]Wu Xiao, Li Jintao, Tang Sheng, Guo Junbo. Video Copy Detection Based on Spatio-Temporal Trajectory Behavior Feature[J]. Journal of Computer Research and Development, 2010, 47(11): 1871-1877.
  • Cited by

    Periodical cited type(7)

    1. 王永生,陈振,刘利民,刘广文. 基于GAT-Transformer时间序列模型的SOWQP. 计算机仿真. 2024(03): 321-326+358 .
    2. 吕锡婷,赵敬华,荣海迎,赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型. 计算机应用. 2024(06): 1760-1766 .
    3. 赵玉妹,王大鹏,王昭然,白翔宇. 基于Transformer系列模型的高压线铁塔区域沉降预测方法. 电工技术. 2024(15): 76-80 .
    4. 吴宏杰,田闯闯,陶然,傅启明,马洁明,崔志明. 图卷积蒸馏Transformer建筑位移预测方法研究. 苏州科技大学学报(自然科学版). 2024(04): 128-138 .
    5. 谢鸿博. 前后端分离架构下基于图神经网络的社交网络关系挖掘. 信息技术与信息化. 2024(12): 104-107 .
    6. 蒋萌,王静,蒋艺. 基于深度学习的多维度心理测评系统设计. 自动化与仪器仪表. 2023(05): 158-161+166 .
    7. 杨以恒. SIR传染病模型在网络信息传播中的应用. 计算机时代. 2023(11): 68-70 .

    Other cited types(11)

Catalog

    Article views (380) PDF downloads (214) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return