• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ni Qingjian, Peng Wenqiang, Zhang Zhizheng, Zhai Yuqing. Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on Information Enhanced Transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293. DOI: 10.7544/issn1000-1239.20210901
Citation: Ni Qingjian, Peng Wenqiang, Zhang Zhizheng, Zhai Yuqing. Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on Information Enhanced Transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293. DOI: 10.7544/issn1000-1239.20210901

Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on Information Enhanced Transmission

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1004300).
More Information
  • Published Date: January 31, 2022
  • Traffic problems not only affect people’s travel, but also bring environmental pollution and safety problems. Accurate traffic flow prediction is the key to build an intelligent transportation system to prevent and alleviate traffic problems. Most of the current methods do not take into account the dynamic spatial-temporal correlation, periodicity, linear and nonlinear characteristics of traffic flow. In this paper, an information enhanced transmission spatial-temporal graph neural network is proposed, which mainly contains a multi-feature attention module, an information enhanced transmission module, a temporal attention module, and a linear-nonlinear fusion module. The multi-feature attention module captures the intrinsic connection between multiple traffic features and takes into account the periodicity of traffic flow. The information enhanced transmission module makes full use of the information in the traffic network, enhancing the information transmission capability of the traffic network and mining the complex dynamic spatial dependencies. The temporal attention module adaptively extracts the dependencies between different time intervals. Furthermore, the linear-nonlinear fusion module considers both linear and nonlinear data features. A large number of comparative experiments are conducted on real-world datasets, and the experimental results demonstrate that the method proposed in this paper has more obvious advantages in terms of traffic flow prediction performance compared with the state-of-the-art baselines.
  • Related Articles

    [1]Zhang Chenhui, Yuan Zhi'an, Qian Yuhua. Dual-Branch Speech Enhancement Neural Network with Convolutional Enhancement Window Attention[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330751
    [2]Kang Hongbo, Feng Yujia, Tai Wenxin, Lan Tian, Wu Zufeng, Liu Qiao. Monaural Speech Enhancement Based on Cross-Dimensional Collaborative Attention Mechanism[J]. Journal of Computer Research and Development, 2023, 60(7): 1639-1648. DOI: 10.7544/issn1000-1239.202220129
    [3]Wang Honglin, Yang Dan, Nie Tiezheng, Kou Yue. Attributed Heterogeneous Information Network Embedding with Self-Attention Mechanism for Product Recommendation[J]. Journal of Computer Research and Development, 2022, 59(7): 1509-1521. DOI: 10.7544/issn1000-1239.20210016
    [4]Sun Jianwen, Zhou Jianpeng, Liu Sannüya, He Feijuan, Tang Yun. Hierarchical Attention Network Based Interpretable Knowledge Tracing[J]. Journal of Computer Research and Development, 2021, 58(12): 2630-2644. DOI: 10.7544/issn1000-1239.2021.20210997
    [5]Wang Chenglong, Yi Jiangyan, Tao Jianhua, Ma Haoxin, Tian Zhengkun, Fu Ruibo. Global and Temporal-Frequency Attention Based Network in Audio Deepfake Detection[J]. Journal of Computer Research and Development, 2021, 58(7): 1466-1475. DOI: 10.7544/issn1000-1239.2021.20200799
    [6]Du Shengdong, Li Tianrui, Yang Yan, Wang Hao, Xie Peng, Horng Shi-Jinn. A Sequence-to-Sequence Spatial-Temporal Attention Learning Model for Urban Traffic Flow Prediction[J]. Journal of Computer Research and Development, 2020, 57(8): 1715-1728. DOI: 10.7544/issn1000-1239.2020.20200169
    [7]Zhang Yixuan, Guo Bin, Liu Jiaqi, Ouyang Yi, Yu Zhiwen. app Popularity Prediction with Multi-Level Attention Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 984-995. DOI: 10.7544/issn1000-1239.2020.20190672
    [8]Sun Xiaowan, Wang Ying, Wang Xin, Sun Yudong. Aspect-Based Sentiment Analysis Model Based on Dual-Attention Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2384-2395. DOI: 10.7544/issn1000-1239.2019.20180823
    [9]Zhang Han, Guo Yuanbo, Li Tao. Domain Named Entity Recognition Combining GAN and BiLSTM-Attention-CRF[J]. Journal of Computer Research and Development, 2019, 56(9): 1851-1858. DOI: 10.7544/issn1000-1239.2019.20180733
    [10]Zhang Zhichang, Zhang Zhenwen, Zhang Zhiman. User Intent Classification Based on IndRNN-Attention[J]. Journal of Computer Research and Development, 2019, 56(7): 1517-1524. DOI: 10.7544/issn1000-1239.2019.20180648
  • Cited by

    Periodical cited type(13)

    1. 刘乐,郭晟楠,靳希源,赵苗苗,陈冉,林友芳,万怀宇. 融合不确定性建模的时空交通数据插补方法. 计算机研究与发展. 2025(02): 346-363 . 本站查看
    2. 高海龙,徐一博,刘坤,李春阳,卢晓煜. 基于多源数据融合的高速公路路网短时交通流参数实时预测. 吉林大学学报(工学版). 2024(01): 155-161 .
    3. 赖培源,李程,王增辉,王昌栋,廖德章. 基于图提示微调的交通流量预测. 计算机研究与发展. 2024(08): 2020-2029 . 本站查看
    4. 何玉林,吴波,吴定明,黄哲学,菲律普弗尼尔-维格. 针对大规模动态图流三角形计数的边哈希分布式抽样算法. 计算机研究与发展. 2024(08): 1882-1903 . 本站查看
    5. 刘妙男,王魏,胡显辉,许德昊. 基于因果卷积和Informer模型的城市公交客流预测. 控制工程. 2024(08): 1445-1454 .
    6. 何婷,周艳秋,辛春花. 基于时空位置关注图神经网络的交通流预测方法. 计算机应用研究. 2024(10): 2932-2938 .
    7. 崔文岳,谷远利,赵胜利,芮小平. 基于有向图卷积与门控循环单元的短时交通流预测方法. 交通信息与安全. 2023(02): 121-128 .
    8. 刘赏,陈浩,陈小玉,贺娇娇. 面向交通流预测的双分支时空图卷积神经网络. 信息与控制. 2023(03): 391-404+416 .
    9. 吴君. SOA下的城市道路交通网络极限容量判定模型. 信息与电脑(理论版). 2023(10): 70-72 .
    10. 户佐安,邓锦程,韩金丽,袁凯. 图神经网络在交通预测中的应用综述. 交通运输工程学报. 2023(05): 39-61 .
    11. 王庆荣,吴玉玉,朱昌锋,王媛. 融合外部属性的短时交通流预测研究. 计算机应用研究. 2022(10): 2974-2978 .
    12. 刘臣,谢宁静,周立欣. 基于邻域采样的异质网络链接预测算法. 计算机与数字工程. 2022(10): 2127-2134+2191 .
    13. 王逸文,王维莉,陈怡霏,毛蔚敏,刘贤超. 基于奇异谱分析的长时交通流混合预测模型. 电子测量与仪器学报. 2022(11): 98-106 .

    Other cited types(31)

Catalog

    Article views (787) PDF downloads (510) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return