• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Yan, Gao Zhenguo, Wang Haijun, Ouyang Yun, Gou Jin. Node Localization Protocol with Adjustable Privacy Protection Capability[J]. Journal of Computer Research and Development, 2022, 59(9): 2075-2088. DOI: 10.7544/issn1000-1239.20210009
Citation: Chen Yan, Gao Zhenguo, Wang Haijun, Ouyang Yun, Gou Jin. Node Localization Protocol with Adjustable Privacy Protection Capability[J]. Journal of Computer Research and Development, 2022, 59(9): 2075-2088. DOI: 10.7544/issn1000-1239.20210009

Node Localization Protocol with Adjustable Privacy Protection Capability

Funds: This work was supported by the National Natural Science Foundation of China (61671169, 61972166) and the Fund of Key Laboratory of Computer Vision and Machine Learning (Huaqiao University), Fujian Province University (201910).
More Information
  • Published Date: August 31, 2022
  • Privacy-preserving summation (PPS) is a competent node positioning technique with privacy protection capability. However, the traditional PPS requires all participating nodes to generate and transmit a set of random interference matrices, which results in excessive network traffic. To address this issue, we propose the Privacy-preserving summation with k (PPS-k). The PPS-k randomly designates k nodes to generate and transmit random interference matrices. The generation process of the interference matrices can be changed by adjusting the value of k, which makes it more flexible than PPS. The node positioning network is composed of several static anchors that know their own positions. The anchors can communicate with each other and send measurements to the target, to help the target positioning. We define different scenarios according to where the measurements are stored and design PPS-k-based node localization protocols for different scenarios. We also propose a notion that uses the ratio of the number of extra equations to the number of unknown scalars as an indicator to evaluate the privacy protection capability of PPS based technique. Compared with the traditional evaluation criteria, the privacy protection rate eliminates the influence of the dimension of privacy information on the evaluation result when evaluating algorithms privacy protection performance. The simulation results validate the efficiency of the proposed methods with PPS-k in adjusting traffic and privacy protection capability.
  • Related Articles

    [1]Zhao Jingxin, Yue Xinghui, Feng Chongpeng, Zhang Jing, Li Yin, Wang Na, Ren Jiadong, Zhang Haoxing, Wu Gaofei, Zhu Xiaoyan, Zhang Yuqing. Survey of Data Privacy Security Based on General Data Protection Regulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2130-2163. DOI: 10.7544/issn1000-1239.20220800
    [2]Wang Bin, Zhang Lei, Zhang Guoyin. A Gradual Sensitive Indistinguishable Based Location Privacy Protection Scheme[J]. Journal of Computer Research and Development, 2020, 57(3): 616-630. DOI: 10.7544/issn1000-1239.2020.20190086
    [3]Huang Haiping, Zhang Dongjun, Wang Kai, Zhu Yikai, Wang Ruchuan. Weighted Large-Scale Social Network Data Privacy Protection Method[J]. Journal of Computer Research and Development, 2020, 57(2): 363-377. DOI: 10.7544/issn1000-1239.2020.20190018
    [4]Meng Xuying, Zhang Qijia, Zhang Hanwen, Zhang Yujun, Zhao Qinglin. Personalized Privacy Preserving Link Prediction in Social Networks[J]. Journal of Computer Research and Development, 2019, 56(6): 1244-1251. DOI: 10.7544/issn1000-1239.2019.20180306
    [5]Wu Xuangou, Wang Pengfei, Zheng Xiao, Fan Xu, Wang Xiaolin. Trajectory Privacy Protection Based on Road Segment Report in VANETs[J]. Journal of Computer Research and Development, 2017, 54(11): 2467-2474. DOI: 10.7544/issn1000-1239.2017.20170371
    [6]Fu Shuai, Jiang Qi, Ma Jianfeng. A Privacy-Preserving Data Aggregation Scheme in Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2016, 53(9): 2030-2038. DOI: 10.7544/issn1000-1239.2016.20150456
    [7]Dai Hua, Yang Geng, Xiao Fu, Zhou Qiang, He Ruiliang. An Energy-Efficient and Privacy-Preserving Range Query Processing in Two-Tiered Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2015, 52(4): 983-993. DOI: 10.7544/issn1000-1239.2015.20140066
    [8]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [9]He Yunhua, Sun Limin, Yang Weidong, Li Zhi, Li Hong. Privacy Preserving for Node Trajectory in VSN: A Game-Theoretic Analysis Based Approach[J]. Journal of Computer Research and Development, 2014, 51(11): 2483-2492. DOI: 10.7544/issn1000-1239.2014.20131074
    [10]Dai Hua, Yang Geng, Qin Xiaolin, Liu Liang. Privacy-Preserving Top-k Query Processing in Two-Tiered Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2013, 50(6): 1239-1252.
  • Cited by

    Periodical cited type(13)

    1. 涂彬彬,陈宇. 支持批量证明的SM2适配器签名及其分布式扩展. 软件学报. 2024(05): 2566-2582 .
    2. 胡小明,陈海婵. 可证明安全的SM2盲适配器签名方案. 网络与信息安全学报. 2024(02): 59-68 .
    3. 唐锴令,郑皓. 融合DES和ECC算法的物联网隐私数据加密方法. 吉林大学学报(信息科学版). 2024(03): 496-502 .
    4. 薛庆水,卢子譞,马海峰,高永福,谈成龙,孙晨曦. 基于SM2的强前向安全性两方共同签名方案. 计算机工程与设计. 2024(08): 2290-2297 .
    5. 张艳硕,刘宁,袁煜淇,杨亚涛. 基于ISRSAC数字签名算法的适配器签名方案. 通信学报. 2023(03): 178-185 .
    6. 陈海婵,郭智浩,王俊以,胡小明. 基于适配器签名和盲混技术的电子资源交易方案设计与实现. 上海第二工业大学学报. 2023(01): 53-60 .
    7. 韦薇,罗敏,白野,彭聪,何德彪. 基于SIMD指令集的SM2数字签名算法快速实现. 密码学报. 2023(04): 720-736 .
    8. 白野,何德彪,罗敏,杨智超,彭聪. 一种针对SM2数字签名算法的攻击方案. 密码学报. 2023(04): 823-835 .
    9. 夏再琦,王祥,白鹏飞,易玲,郭艳鹏,宋绍华. 智能终端的Uboot引导应用程序实现方法. 单片机与嵌入式系统应用. 2023(10): 57-60 .
    10. 刘捷. 基于鸿蒙的新一代智能POS业务软件设计. 电子元器件与信息技术. 2023(12): 32-35 .
    11. 苏簪铀,马振华,王志洋. 基于协同签名的电网移动GIS签名系统的设计与实现. 农村电气化. 2022(04): 50-53 .
    12. 王子瑞,张驰,魏凌波. 基于双线性配对的适配器签名方案. 密码学报. 2022(04): 686-697 .
    13. 李松钊,梁晓芳,李文敬. 基于零知识验证签名的食品供应链追溯算法研究. 南宁师范大学学报(自然科学版). 2022(04): 49-56 .

    Other cited types(10)

Catalog

    Article views (149) PDF downloads (91) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return