• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Meng Xuying, Zhang Qijia, Zhang Hanwen, Zhang Yujun, Zhao Qinglin. Personalized Privacy Preserving Link Prediction in Social Networks[J]. Journal of Computer Research and Development, 2019, 56(6): 1244-1251. DOI: 10.7544/issn1000-1239.2019.20180306
Citation: Meng Xuying, Zhang Qijia, Zhang Hanwen, Zhang Yujun, Zhao Qinglin. Personalized Privacy Preserving Link Prediction in Social Networks[J]. Journal of Computer Research and Development, 2019, 56(6): 1244-1251. DOI: 10.7544/issn1000-1239.2019.20180306

Personalized Privacy Preserving Link Prediction in Social Networks

Funds: This work was supported by the National Natural Science Foundation of China (61672500, 61572474, 61872452, 61872451), the International S&T Cooperation Program of China (2016YFE0121500), and the FDCT-MOST Projects (001/2015/AMJ).
More Information
  • Published Date: May 31, 2019
  • Link prediction is widely used to predict and recommend social relationships in social networks. However, it requires users’ personal information, leading to great risks to users’ privacy. To prevent privacy leakage, users may refuse to provide needed information to the service provider, which in turn brings in decreases on the effectiveness of link prediction, and further hurts user experience. To eliminate the concerns of privacy disclosure and encourage users to provide more data for link prediction, we propose personalized privacy preserving link prediction in social network. We get rid of the full dependence on the service provider and friends by making users and the service provider cooperate to complete the process of link prediction. Also, we attach different magnitude noise with personalized privacy settings, maintaining the effectiveness of link prediction while protecting sensitive links and sensitive attributes. Finally, theoretical analysis is provided based on differential privacy, and experimental results on real world datasets show that our proposed methods can provide better privacy protection while maintaining the effectiveness of link prediction.
  • Related Articles

    [1]Zhang Xiaojian, Zhang Leilei, Zhang Zhizheng. Federated Learning Method Under User-Level Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(2): 472-487. DOI: 10.7544/issn1000-1239.202330167
    [2]Fu Nan, Ni Weiwei, Jiang Zepeng, Hou Lihe, Zhang Dongyue, Zhang Ruyu. Directed Graph Clustering Algorithm with Edge Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(1): 256-268. DOI: 10.7544/issn1000-1239.202330193
    [3]Wu Wanqing, Zhao Yongxin, Wang Qiao, Di Chaofan. A Safe Storage and Release Method of Trajectory Data Satisfying Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(11): 2430-2443. DOI: 10.7544/issn1000-1239.2021.20210589
    [4]Zhang Yuxuan, Wei Jianghong, Li Ji, Liu Wenfen, Hu Xuexian. Graph Degree Histogram Publication Method with Node-Differential Privacy[J]. Journal of Computer Research and Development, 2019, 56(3): 508-520. DOI: 10.7544/issn1000-1239.2019.20170886
    [5]Zhu Weijun, You Qingguang, Yang Weidong, Zhou Qinglei. Trajectory Privacy Preserving Based on Statistical Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(12): 2825-2832. DOI: 10.7544/issn1000-1239.2017.20160647
    [6]He Ming, Chang Mengmeng, Wu Xiaofei. A Collaborative Filtering Recommendation Method Based on Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(7): 1439-1451. DOI: 10.7544/issn1000-1239.2017.20160207
    [7]Zhang Xiaojian, Shao Chao, Meng Xiaofeng. Accurate Histogram Release under Differential Privacy[J]. Journal of Computer Research and Development, 2016, 53(5): 1106-1117. DOI: 10.7544/issn1000-1239.2016.20150304
    [8]Lu Guoqing, Zhang Xiaojian, Ding Liping, Li Yanfeng, Liao Xin. Frequent Sequential Pattern Mining under Differential Privacy[J]. Journal of Computer Research and Development, 2015, 52(12): 2789-2801. DOI: 10.7544/issn1000-1239.2015.20140516
    [9]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [10]Ouyang Jia, Yin Jian, Liu Shaopeng, Liu Yubao. An Effective Differential Privacy Transaction Data Publication Strategy[J]. Journal of Computer Research and Development, 2014, 51(10): 2195-2205. DOI: 10.7544/issn1000-1239.2014.20130824
  • Cited by

    Periodical cited type(13)

    1. 徐立祥,葛伟,陈恩红,罗斌. 基于图核同构网络的图分类方法. 计算机研究与发展. 2024(04): 903-915 . 本站查看
    2. 王春茹. 社交网络的隐私保护技术研究. 通讯世界. 2024(10): 34-36 .
    3. 成彦衡,黄宇. 基于K近邻算法的网络敏感信息过滤方法. 电子设计工程. 2023(06): 105-108+113 .
    4. 姜涛,张洋. 基于Louvain算法的复杂网络链路预测仿真. 计算机仿真. 2023(03): 417-420+452 .
    5. 王健宗,孔令炜,黄章成,陈霖捷,刘懿,卢春曦,肖京. 联邦学习隐私保护研究进展. 大数据. 2021(03): 130-149 .
    6. 方安琪,周祚山. 基于新型快递物流站点取件模式研究. 物流工程与管理. 2021(07): 20-22+9 .
    7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 .
    8. 吕亚荣. 无线传感器网络源节点隐私位置信息保护研究. 计算机仿真. 2021(10): 320-323 .
    9. 赵帮华. 云计算的舰船网络敏感数据保护机制研究. 舰船科学技术. 2020(08): 163-165 .
    10. 刘晓健,赵亮. 多维网络信息流量式泄露高效检测方法仿真. 计算机仿真. 2020(05): 448-452 .
    11. 周硙. 加权社交网络深度差分隐私数据保护算法研究. 计算机仿真. 2020(10): 282-285+373 .
    12. 邹国红,邹欣宇. 关于群智感知网络敏感信息差分隐私保护研究. 计算机仿真. 2020(11): 316-319+444 .
    13. 王晓勇. 基于大数据技术的本地差分隐私高维数据收集算法. 内蒙古民族大学学报(自然科学版). 2020(06): 470-475 .

    Other cited types(14)

Catalog

    Article views (1258) PDF downloads (521) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return