• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Meng Zili, Xu Mingwei. Latency Optimization in Real-Time Multimedia Transmission: Architecture, Progress and the Future[J]. Journal of Computer Research and Development, 2024, 61(12): 3054-3068. DOI: 10.7544/issn1000-1239.202330240
Citation: Meng Zili, Xu Mingwei. Latency Optimization in Real-Time Multimedia Transmission: Architecture, Progress and the Future[J]. Journal of Computer Research and Development, 2024, 61(12): 3054-3068. DOI: 10.7544/issn1000-1239.202330240

Latency Optimization in Real-Time Multimedia Transmission: Architecture, Progress and the Future

Funds: This work was supported by the National Natural Science Foundation of China (62221003).
More Information
  • Author Bio:

    Meng Zili: born in 1999. PhD candidate. His main research interest includes real-time video transmission

    Xu Mingwei: born in 1971. PhD, professor. Member of CCF. His main research interest includes Internet architecture

  • Received Date: March 31, 2023
  • Revised Date: August 15, 2023
  • Available Online: March 13, 2024
  • Real-time multimedia transmission is one of the most important applications of the Internet, with the applications such as videoconferencing, cloud gaming, virtual reality and so on. In the same time, the real-time multimedia transmission systems therefore demand high requirements for the end-to-end transmission latency. Among them, latency fluctuation is the most challenging problem in latency optimization. However, traditional ‘best-effort’ transmission services in the Internet cannot meet the requirements of latency fluctuations for real-time multimedia transmission in many cases. We firstly elaborates the main challenges faced by real-time multimedia transmission. Secondly, we analyze the key issues that need to be addressed to optimize the latency of real-time multimedia transmission. Based on these issues, two key paths (control path and data path) and five core components in the architecture of real-time multimedia transmission system are summarized. Around the technologies involved in each component, representative research results are summarized and discussed, especially for the research efforts in the recent years. Based on the analysis above, the research branches for real-time multimedia transmission and low-latency applications are summarized, and the optimization algorithms and applications for each research branch are reviewed. A key finding in this paper is that the fluctuation of latency is the key metric that research needs to work on. Finally, we also discuss and propose possible future research directions for the readers.

  • [1]
    Cisco. VNI complete forecast highlights[EB/OL]. 2018[2023-08-10].https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
    [2]
    Livingood J. Working latency — The next QoE frontier[EB/OL]. 2021[2023-08-10].https://blog.apnic.net/2021/12/02/working-latency-the-next-qoe-frontier/
    [3]
    Mohan N, Corneo L, Zavodovski A, et al. Pruning edge research with latency shears[C]//Proc of the 19th ACM Workshop on Hot Topics in Networks. New York: ACM, 2020: 182−189
    [4]
    Meng Zili, Guo Yaning, Sun Chen, et al. Achieving consistent low latency for wireless real-time communications with the shortest control loop[C]//Proc of the 36th ACM SIGCOMM Conf. New York: ACM, 2022: 193−206
    [5]
    Kämäräinen T, Siekkinen M, Ylä-Jääski A, et al. A measurement study on achieving imperceptible latency in mobile cloud gaming[C]//Proc of the 8th ACM Multimedia Systems Conf. New York: ACM, 2017: 88−99
    [6]
    Shi Shu, Cheng-Hsin H, Nahrstedt K, et al. Using graphics rendering contexts to enhance the real-time video coding for mobile cloud gaming[C]//Proc of the 19th ACM Int Conf on Multimedia. New York: ACM, 2011: 103−112
    [7]
    Wimmer R, Schmid A, Bockes F. On the latency of USB-connected input devices[C]//Proc of the 37th ACM CHI Conf. New York: ACM, 2019: 420−431
    [8]
    Slivar I, Skorin-Kapov L, Suznjevic M. Cloud gaming QoE models for deriving video encoding adaptation strategies[C]//Proc of the 7th ACM Multimedia Systems Conf. New York: ACM, 2016: 185−196
    [9]
    Li Tong, Zheng Kai, Xu Ke, et al. Tack: Improving wireless transport performance by taming acknowledgments[C]//Proc of the 34th ACM SIGCOMM 2020 Conf. New York: ACM, 2020: 15−30
    [10]
    Meng Zili, Wang Tingfeng, Shen Yixin, et al. Enabling high quality real-time communications with adaptive frame-rate[C]//Proc of the 20th USENIX NSDI 2023 Conf. Berkeley, CA: USENIX Association, 2023: 1429−1450
    [11]
    Wu Dapeng, Hou Yiwei Thomas, Zhang Yaqin. Transporting real-time video over the Internet: Challenges and approaches[J]. Proceedings of the IEEE, 2000, 88(12): 1855−1877 doi: 10.1109/5.899055
    [12]
    Wu Dapeng, Hou Yiwei Thomas, Zhu Wenwu, et al. Streaming video over the Internet: Approaches and directions[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(3): 282−300 doi: 10.1109/76.911156
    [13]
    Huo Yongkai, Hellge C, Wiegand T, et al. A tutorial and review on inter-layer FEC coded layered video streaming[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 1166−1207
    [14]
    张杰良,蒋未芳,王欣,等. 视频会议画面质量评价方法综述[C]//第六届中国指挥控制大会论文集. 北京:电子工业出版社,2018:207−211

    Zhang Jieliang, Jiang Weifang, Wang Xin, et al. Survey of video conference image quality assessment[C]//Proc of the 6th Chinese Guidance and Control Conf. Beijing: Publishing House of Electronics Industry, 2018: 207−211(in Chinese)
    [15]
    胡晓艳,童钟奇,徐恪,等. 命名数据网络中的视频传输研究综述[J]. 计算机研究与发展,2021,58(1):116−136 doi: 10.7544/issn1000-1239.2021.20190697

    Hu Xiaoyan, Tong Zhongqi, Xu Ke, et al. Video delivery over named data networking: A survey[J]. Journal of Computer Research and Development, 2021, 58(1): 116−136(in Chinese) doi: 10.7544/issn1000-1239.2021.20190697
    [16]
    Li Yang, Lin Hao, Li Zhenhua, et al. A nationwide study on cellular reliability: Measurement, analysis, and enhancements[C]//Proc of the 35th ACM SIGCOMM Conf. New York: ACM, 2021: 597−609
    [17]
    Yang Xinlei, Lin Hao, Li Zhenhua, et al. Mobile access bandwidth in practice: Measurement, analysis, and implications[C]//Proc of the 36th ACM SIGCOMM Conf. New York: ACM, 2022: 114−128
    [18]
    Yang Xinlei, Wang Xiaolong, Li Zhenhua, et al. Fast and light bandwidth testing for internet users[C]//Proc of the 18th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2021: 1011−1026
    [19]
    Alizadeh M, Kabbani A, Atikoglu B, et al. Stability analysis of QCN: The averaging principle[C]//Proc of the 39th ACM SIGMETRICS Conf. New York: ACM, 2011: 49−60
    [20]
    Dong Mo, Li Qingxi, Zarchy D, et al. PCC: Re-architecting congestion control for consistent high performance[C]//Proc of the 12th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2015: 395−408
    [21]
    Abbasloo S, Yen C Y, Chao J. Classic meets modern: A pragmatic learning-based congestion control for the Internet[C]//Proc of the 34th ACM SIGCOMM Conf. New York: ACM, 2020: 632−647
    [22]
    Mao Hongzi, Netravali R, Alizadeh M. Neural adaptive video streaming with pensieve[C]//Proc of the 31st ACM SIGCOMM Conf. New York: ACM, 2017: 197−210
    [23]
    Yin Xiaoqi, Jindal A, Sekar V, et al. A control-theoretic approach for dynamic adaptive video streaming over HTTP[C]//Proc of the 29th ACM SIGCOMM Conf. New York: ACM, 2015: 325−338
    [24]
    Cheng Yuchung, Cardwell N, Dukkipati N, et al. RFC8985: The RACK-TLP loss detection algorithm for TCP[EB/OL]. 2021[2023-08-10].https://datatracker.ietf.org/doc/html/rfc8985
    [25]
    Nichols K, Jacobson V. Controlling queue delay[J]. Communications of the ACM, 2012, 55(7): 42−50 doi: 10.1145/2209249.2209264
    [26]
    Padhye J, Firoiu V, Towsley D F, et al. Modeling TCP Reno performance: A simple model and its empirical validation[J]. IEEE/ACM Transactions on Networking, 2000, 8(2): 133−145 doi: 10.1109/90.842137
    [27]
    Ha S, Rhee I, Xu L. CUBIC: A new TCP-friendly high-speed TCP variant[J]. ACM SIGOPS Operating Systems Review, 2008, 42(5): 64−74 doi: 10.1145/1400097.1400105
    [28]
    Dasari M, Kahatapitiya K, Das S R, et al. Swift: Adaptive video streaming with layered neural codecs[C]//Proc of the 19th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2022: 103−118
    [29]
    Zadtootaghaj S, Schmidt S, Sabet S S, et al. Quality estimation models for gaming video streaming services using perceptual video quality dimensions[C]//Proc of the 11th ACM Multimedia Systems Conf. New York: ACM, 2020: 213−224
    [30]
    Yeo H, Jung Y, Kim J, et al. Neural adaptive content-aware internet video delivery[C]//Proc of the 15th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2018: 645−661
    [31]
    Kim J, Jung Y, Yeo H, et al. Neural-enhanced live streaming: Improving live video ingest via online learning[C]//Proc of the 34th ACM SIGCOMM Conf. New York: ACM, 2020: 107−125
    [32]
    Mukherjee D, Bankoski J, Grange A, et al. The latest open-source video codec VP9—An overview and preliminary results[C]//Proc of the 30th Picture Coding Symp (PCS). Piscataway, NJ: IEEE, 2013: 390−393
    [33]
    Huang Teyuan, Johari R, McKeown N, et al. A Buffer-based approach to rate adaptation: Evidence from a large video streaming service[C]//Proc of the 28th ACM SIGCOMM Conf. New York: ACM, 2014: 187−198
    [34]
    Yan F, Ayers H, Zhu Chenzhi, et al. Learning in situ: A randomized experiment in video streaming[C]//Proc of the 17th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2020: 495−511
    [35]
    Sarker Z, Perkins C, Singh V, et al. RFC8888: RTP control protocol (RTCP) feedback for congestion control[EB/OL]. 2021[2023-08-10].https://datatracker.ietf.org/doc/html/rfc8888
    [36]
    Schulzrinne H, Rao A, Lanphier R, et al. RFC7826: Real-time streaming protocol version 2.0[EB/OL]. 2016[2023-08-10].https://datatracker.ietf.org/doc/html/rfc7826
    [37]
    Zhang Lei, Cui Yong, Pan Junchen, et al. Deadline-aware transmission control for real-time video streaming[C/OL]//Proc of the 29th IEEE ICNP Conf. Piscataway, NJ: IEEE, 2021[2023-08-10].https://ieeexplore.ieee.org/document/9651971
    [38]
    Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600−612 doi: 10.1109/TIP.2003.819861
    [39]
    Hore A, Ziou D. Image quality metrics: PSNR vs SSIM[C]//Proc of the 20th Int Conf on Pattern Recognition. Piscataway, NJ: IEEE, 2010: 2366−2369
    [40]
    Fouladi S, Wahby R S, Shacklett B, et al. Encoding, fast and slow: Low-latency video processing using thousands of tiny threads[C]//Proc of the 14th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2017: 363−376
    [41]
    Fouladi S, Emmons J, Orbay E, et al. Salsify: Low-latency network video through tighter integration between a video codec and a transport protocol[C]//Proc of the 15th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2018: 267−282
    [42]
    Yeo H, Chong C J, Jung Y, et al. Nemo: Enabling neural-enhanced video streaming on commodity mobile devices[C]//Proc of the 26th ACM MobiCom Conf. New York: ACM, 2020: 363−376
    [43]
    Spiteri K, Urgaonkar R, Sitaraman R K. BOLA: Near-optimal bitrate adaptation for online videos[C/OL]//Proc of the 35th IEEE INFOCOM 2016 Conf. Piscataway, NJ: IEEE, 2016[2023-08-10].https://ieeexplore.ieee.org/document/7524428
    [44]
    Spiteri K, Sitaraman R, Sparacio D. From theory to practice: Improving bitrate adaptation in the DASH reference player[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(2): 1−29
    [45]
    Li Zhi, Zhu Xiaoqing, Gahm J, et al. Probe and adapt: Rate adaptation for HTTP video streaming at scale[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(4): 719−733 doi: 10.1109/JSAC.2014.140405
    [46]
    Wang Cong, Rizk A, Zink M. SQUAD: A spectrum-based quality adaptation for dynamic adaptive streaming over HTTP[C]//Proc of the 7th ACM Multimedia Systems. New York: ACM, 2016: 1−12
    [47]
    Sengupta S, Ganguly N, Chakraborty S, et al. HotDASH: Hotspot aware adaptive video streaming using deep reinforcement learning[C]//Proc of the 26th IEEE ICNP Conf. Piscataway, NJ: IEEE, 2018: 165−175
    [48]
    Yi Gang, Yang Dan, Bentaleb A, et al. The ACM multimedia 2019 live video streaming grand challenge[C]//Proc of the 27th ACM Int Conf on Multimedia. New York: ACM, 2019: 2622−2626
    [49]
    Shi Hang, Cui Yong, Qian Feng, et al. Dtp: Deadline-aware transport protocol[C]//Proc of the 3rd Asia-Pacific Workshop on Networking. New York: ACM, 2019: 1−7

    Shi Hang,Cui Yong,Qian Feng,et al. Dtp:Deadline-aware transport protocol[C]//Proc of the 3rd Asia-Pacific Workshop on Networking. New York:ACM,2019:1−7
    [50]
    Winstein K, Sivaraman A, Balakrishnan H. Stochastic forecasts achieve high throughput and low delay over cellular networks[C]//Proc of the 10th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2013: 459−471
    [51]
    Carlucci G, De Cicco L, Holmer S, et al. Analysis and design of the Google congestion control for web real-time communication (WebRTC)[C]//Proc of the 7th ACM Multimedia Systems Conf. New York: ACM, 2016: 133−144
    [52]
    Zhu Xiaoqing, Pan Rong, Ramalho M, et al. RFC8698: Network-assisted dynamic adaptation (NADA): A unified congestion control scheme for real-time media[EB/OL]. 2020[2023-08-10].https://datatracker.ietf.org/doc/html/rfc8698
    [53]
    Johansson I, Sarker Z. RFC8298: Self-clocked rate adaptation for multimedia[EB/OL]. 2017[2023-08-10].https://datatracker.ietf.org/doc/html/rfc8298
    [54]
    Arun V, Balakrishnan H. Copa: Practical delay-based congestion control for the Internet[C]//Proc of the 15th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2018: 329−342
    [55]
    Dong Mo, Meng Tong, Zarchy D, et al. PCC Vivace: Online-learning congestion control[C]//Proc of the 15th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2018: 343−356
    [56]
    Holmer S, Shemer M, Paniconi M. Handling packet loss in WebRTC[C]//Proc of the 20th IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2013: 1860−1864
    [57]
    Fong S L, Emara S, Li B, et al. Low-latency network-adaptive error control for interactive streaming[C]//Proc of the 27th ACM Int Conf on Multimedia. New York: ACM, 2019: 438−446
    [58]
    Rudow M, Yan F, Kumar A, et al. StreamMelt: Efficient loss recovery for videoconferencing via streaming codes[C/OL]//Proc of the 20th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2023: 953−972

    Rudow M,Yan F,Kumar A,et al. StreamMelt:Efficient loss recovery for videoconferencing via streaming codes[C/OL]//Proc of the 20th USENIX NSDI Conf. Berkeley,CA:USENIX Association,2023:953−972
    [59]
    Cardwell N, Cheng Yuchung, Gunn C S, et al. BBR: Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip propagation time[J]. Queue, 2016, 14(5): 20−53 doi: 10.1145/3012426.3022184
    [60]
    Zaki Y, Pötsch T, Chen J, et al. Adaptive congestion control for unpredictable cellular networks[C]//Proc of the 29th ACM SIGCOMM Conf. New York: ACM, 2015: 509−522
    [61]
    Sarolahti P, Kojo M, Raatikainen K. F-RTO: An enhanced recovery algorithm for TCP retransmission timeouts[J]. ACM SIGCOMM Computer Communication Review, 2003, 33(2): 51−63 doi: 10.1145/956981.956987
    [62]
    Bolot J C, Fosse-Parisis S, Towsley D. Adaptive FEC-based error control for Internet telephony[C]//Proc of the 39th IEEE INFOCOM Conf. Piscataway, NJ: IEEE, 1999: 1453−1460
    [63]
    Padhye C, Christensen K J, Moreno W. A new adaptive FEC loss control algorithm for voice over IP applications[C]//Proc of the 19th IEEE IPCCC Conf. Piscataway, NJ: IEEE, 2000: 307−313
    [64]
    Chen Ke, Wang Han, Fang Shuwen, et al. RL-AFEC: Adaptive forward error correction for real-time video communication based on reinforcement learning[C]//Proc of the 13th ACM Multimedia Systems Conf. New York: ACM, 2022: 96−108
    [65]
    Fong S L, Khisti A, Li B, et al. Optimal streaming codes for channels with burst and arbitrary erasures[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4274−4292 doi: 10.1109/TIT.2019.2894124
    [66]
    Krishnan M N, Shukla D, Kumar P V. Rate-optimal streaming codes for channels with burst and random erasures[J]. IEEE Transactions on Information Theory, 2020, 66(8): 4869−4891 doi: 10.1109/TIT.2020.2983152
    [67]
    Floyd S, Jacobson V. Random early detection gateways for congestion avoidance[J]. IEEE/ACM Transactions on Networking, 1993, 1(4): 397−413 doi: 10.1109/90.251892
    [68]
    Feng Wuchang, Kandlur D, Saha D, et al. BLUE: A new class of active queue management algorithms[EB/OL]. 1999[2023-08-10].https://www.cse.umich.edu/techreports/cse/99/CSE-TR-387-99.pdf
    [69]
    Feng Wuchang, Kapadia A, Thulasidasan S. GREEN: Proactive queue management over a best-effort network[C]//Proc of the 21st Global Telecommunications Conf. Piscataway, NJ: IEEE, 2002: 1774−1778
    [70]
    Long Chengnian, Zhao Bin, Guan Xinping, et al. The Yellow active queue management algorithm[J]. Computer Networks, 2005, 47(4): 525−550 doi: 10.1016/j.comnet.2004.09.006
    [71]
    Spang B, Arslan S, McKeown N. Updating the theory of buffer sizing[J]. ACM SIGMETRICS Performance Evaluation Review, 2022, 49(3): 55−56 doi: 10.1145/3529113.3529131
    [72]
    Tang Jiaxin, Liu Sen, Xu Yang, et al. ABS: Adaptive buffer sizing via augmented programmability with machine learning[C]//Proc of the 41st IEEE INFOCOM Conf. Piscataway, NJ: IEEE, 2022: 2038−2047
    [73]
    Katabi D, Handley M, Rohrs C. Congestion control for high bandwidth-delay product networks[C]//Proc of the 16th ACM SIGCOMM Conf. New York: ACM, 2002: 89−102
    [74]
    Chia-Hui T, Zhu Jiang, Dukkipati N. Making large scale deployment of RCP practical for real networks[C]//Proc of the 27th IEEE INFOCOM Conf. Piscataway, NJ: IEEE, 2008: 2180−2188
    [75]
    Flores M, Wenzel A, Kuzmanovic A. Enabling router-assisted congestion control on the Internet[C/OL]//Proc of the 24th Int Conf on Network Protocols (ICNP). Piscataway, NJ: IEEE, 2016[2023-08-10].https://ieeexplore.ieee.org/document/7784442
    [76]
    Goyal P, Agarwal A, Netravali R, et al. ABC: A simple explicit congestion controller for wireless networks[C]//Proc of the 17th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2020: 353−372
    [77]
    De Schepper K, Briscoe B, White G. RFC 9332: Dual-queue coupled active queue management (AQM) for low latency, low loss, and scalable throughput (L4S)[EB/OL]. 2023[2023-08-10].https://datatracker.ietf.org/doc/html/rfc9332
    [78]
    Bai Wei, Chen Li, Chen Kai, et al. Information-agnostic flow scheduling for commodity data centers[C]//Proc of the 12th USENIX NSDI Conf. Berkeley, CA: USENIX Association, 2015: 455−468
    [79]
    Alizadeh M, Yang Shuang, Sharif M, et al. pFabric: Minimal near-optimal datacenter transport[C]//Proc of the 27th ACM SIGCOMM Conf. New York: ACM, 2013: 435−446
    [80]
    Addanki V, Apostolaki M, Ghobadi M, et al. ABM: Active buffer management in datacenters[C]//Proc of the 36th ACM SIGCOMM Conf. New York: ACM, 2022: 36−52
    [81]
    Kwok-Ho C, Babiarz J, Baker F. RFC 4594: Configuration guidelines for diffserv service classes[EB/OL]. 2006[2023-08-10].https://datatracker.ietf.org/doc/html/rfc4594
    [82]
    Appenzeller G, Keslassy I, McKeown N. Sizing router buffers[J]. ACM SIGCOMM Computer Communication Review, 2004, 34(4): 281−292 doi: 10.1145/1030194.1015499
    [83]
    Zhu Yibo, Eran H, Firestone D, et al. Congestion control for large-scale RDMA deployments[C]//Proc of the 29th ACM SIGCOMM Conf. New York: ACM, 2015: 523−536
    [84]
    Li Yuliang, Miao Rui, Liu Hongqiang, et al. HPCC: High precision congestion control[C]//Proc of the 33rd ACM SIGCOMM Conf. New York: ACM, 2019: 44−58
    [85]
    Chen Wei, Ma Liangping, Chien-Chung S. Congestion-aware MAC layer adaptation to improve video teleconferencing over wi-fi[C]//Proc of the 6th ACM Multimedia Systems Conf. New York: ACM, 2015: 130−141
    [86]
    Meng Zili, Chen Jing, Guo Yaning, et al. PiTree: Practical implementation of abr algorithms using decision trees[C]//Proc of the 27th ACM Int Conf on Multimedia. New York: ACM, 2019: 2431−2439
    [87]
    Meng Zili, Guo Yaning, Shen Yixin, et al. Practically deploying heavyweight adaptive bitrate algorithms with teacher-student learning[J]. IEEE/ACM Transactions on Networking, 2021, 29(2): 723−736 doi: 10.1109/TNET.2020.3048666
    [88]
    Meng Zili, Wang Minhu, Bai Jiasong, et al. Interpreting deep learning-based networking systems[C]//Proc of the 34th ACM SIGCOMM Conf. New York: ACM, 2020: 154−171
  • Related Articles

    [1]Wang Zirui, Jiang Dejun. Key Techniques of Swapping Mechanism Based on Ultra-Low Latency SSD[J]. Journal of Computer Research and Development, 2024, 61(3): 557-570. DOI: 10.7544/issn1000-1239.202330538
    [2]Wu Xian, Tang Hongbo, Zhao Yu, Xu Mingyan. A Cross-Cluster Real-Time Migration Method for Stateful Container[J]. Journal of Computer Research and Development, 2024, 61(2): 494-502. DOI: 10.7544/issn1000-1239.202220602
    [3]Wang Zihan, Zhang Jiao, Zhang Yuan, Pan Tian, Huang Tao. A Transport Control Protocol for Low Earth Orbit Satellite Networks Based on Link Information Estimation[J]. Journal of Computer Research and Development, 2023, 60(8): 1846-1857. DOI: 10.7544/issn1000-1239.202220299
    [4]Fu Wenwen, Liu Rulin, Quan Wei, Jiang Xuyan, Sun Zhigang. nPSA:A Low-Latency, Deterministic Switching Architecture for TSN Chips[J]. Journal of Computer Research and Development, 2023, 60(6): 1322-1336. DOI: 10.7544/issn1000-1239.202111205
    [5]Fan Zhihua, Wu Xinxin, Li Wenming, Cao Huawei, An Xuejun, Ye Xiaochun, Fan Dongrui. Dataflow Architecture Optimization for Low-Precision Neural Networks[J]. Journal of Computer Research and Development, 2023, 60(1): 43-58. DOI: 10.7544/issn1000-1239.202111275
    [6]Liao Xiaojian, Yang Zhe, Yang Hongzhang, Tu Yaofeng, Shu Jiwu. A Low-Latency Storage Engine with Low CPU Overhead[J]. Journal of Computer Research and Development, 2022, 59(3): 489-498. DOI: 10.7544/issn1000-1239.20210574
    [7]Fu Yongquan, Li Dongsheng. Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey[J]. Journal of Computer Research and Development, 2018, 55(3): 512-523. DOI: 10.7544/issn1000-1239.2018.20170793
    [8]Gong Haigang, Yu Changyuan, Liu Ming, Yi Fasheng, Wang Xiaomin, Chen Lijun. A Self-Adaptive, Energy-Efficient Low Latency MAC Protocol for Wireless Sensor Network[J]. Journal of Computer Research and Development, 2007, 44(11): 1866-1872.
    [9]Li Yong, Wang Zhiying, Zhao Xuemi, and Yue Hong. Design of Application Specific Instruction-Set Processors Directed by Configuration Stream Driven Computing Architecture[J]. Journal of Computer Research and Development, 2007, 44(4): 714-721.
    [10]Zhang Yujun, Li Zhongcheng, Zheng Hongxia, Tian Ye, and Sun Jingbo. Transport Mechanism Applied to Computer Network Protocol Conformance Testing[J]. Journal of Computer Research and Development, 2005, 42(1): 102-108.

Catalog

    Article views (290) PDF downloads (113) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return