• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Lan Wenfei, Xing Zhibao, Huang Jun, Qiang Xiaoli. The DNA Self-Assembly Computing Model for Solving Perfect Matching Problem of Bipartite Graph[J]. Journal of Computer Research and Development, 2016, 53(11): 2583-2593. DOI: 10.7544/issn1000-1239.2016.20150312
Citation: Lan Wenfei, Xing Zhibao, Huang Jun, Qiang Xiaoli. The DNA Self-Assembly Computing Model for Solving Perfect Matching Problem of Bipartite Graph[J]. Journal of Computer Research and Development, 2016, 53(11): 2583-2593. DOI: 10.7544/issn1000-1239.2016.20150312

The DNA Self-Assembly Computing Model for Solving Perfect Matching Problem of Bipartite Graph

More Information
  • Published Date: October 31, 2016
  • Biological systems are far more complex and robust than systems we can engineer today, and Because of its advantages of stability and specificity, DNA molecules have been used for the construction of nano-scale structures. With the development of DNA molecule self-assembly strategy, lots of programmable DNA tiles are constructed and used for solving NP problems. The tile assembly model, a formal model of crystal growth, is a highly distributed parallel model of natures self-assembly with the traits of highly distributed parallel, massive storage density and low power consumption. In the system, a function can be computed by deterministic assembly and identified two important quantities: the number of tile types and the assembly speed of the computation. Here a DNA self-assembly model for perfect matching problem of bipartite graph is demonstrated, and a 10-vertices bipartite graph is used as an example to illustrate this model. The computation is nondeterministic and each parallel assembly is executed in time linear in the input. The result shows that the successful solutions can be found among the many parallel assemblies, and it requires only a constant number of different tile types: 14.
  • Related Articles

    [1]Cheng Haodong, Han Meng, Zhang Ni, Li Xiaojuan, Wang Le. Closed High Utility Itemsets Mining over Data Stream Based on Sliding Window Model[J]. Journal of Computer Research and Development, 2021, 58(11): 2500-2514. DOI: 10.7544/issn1000-1239.2021.20200554
    [2]Zhang Xiaojian, Wang Miao, Meng Xiaofeng. An Accurate Method for Mining top-k Frequent Pattern Under Differential Privacy[J]. Journal of Computer Research and Development, 2014, 51(1): 104-114.
    [3]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [4]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [5]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [6]Tong Yongxin, Zhang Yuanyuan, Yuan Mei, Ma Shilong, Yu Dan, Zhao Li. An Efficient Algorithm for Mining Compressed Sequential Patterns[J]. Journal of Computer Research and Development, 2010, 47(1): 72-80.
    [7]Liu Xuejun, Xu Hongbing, Dong Yisheng, Qian Jiangbo, Wang Yongli. Mining Frequent Closed Patterns from a Sliding Window over Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1738-1743.
    [8]Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
    [9]Ma Haibing, Zhang Chenghong, Zhang Jin, and Hu Yunfa. Mining Frequent Patterns Based on IS\++-Tree Model[J]. Journal of Computer Research and Development, 2005, 42(4): 588-593.
    [10]Wang Wei, Zhou Haofeng, Yuan Qingqing, Lou Yubo, and Sui Baile. Mining Frequent Patterns Based on Graph Theory[J]. Journal of Computer Research and Development, 2005, 42(2): 230-235.

Catalog

    Article views (1158) PDF downloads (564) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return