• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351
Citation: Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351

Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning

More Information
  • Published Date: April 30, 2017
  • All features contribute equally to compute the distance between any pair of instances when finding the nearest neighbors in traditional kNN based multi-label learning algorithms. Furthermore, most of these algorithms transform the multi-label problem into a set of single-label binary problems, which ignore the label correlation. The performance of multi-label learning algorithm greatly depends on the input features, and different features contain different knowledge about the label classification, so the features should be given different importance. Mutual information is one of the widely used measures of dependency of variables, and can evaluate the knowledge contained in the feature about the label classification. Therefore, we propose a granular feature weighted k-nearest neighbors algorithm for multi-label learning based on mutual information, which gives the feature weights according to the knowledge contained in the feature. The proposed algorithm firstly granulates the label space into several label information granules to avoid the problem of label combination explosion problem, and then calculates feature weights for each label information granule, which takes label combinations into consideration to merge label correlations into feature weights. The experimental results show that the proposed algorithm can achieve better performance than other common multi-label learning algorithms.
  • Related Articles

    [1]Bai Xuefei, Wang Wenjian, Liang Jiye. An Active Contour Model Based on Region Saliency for Image Segmentation[J]. Journal of Computer Research and Development, 2012, 49(12): 2686-2695.
    [2]Long Jianwu, Shen Xuanjing, and Chen Haipeng. Interactive Document Images Thresholding Segmentation Algorithm Based on Image Regions[J]. Journal of Computer Research and Development, 2012, 49(7): 1420-1431.
    [3]Liu Zhe, Song Yuqing, Chen Jianmei, Xie Conghua, Song Wenshan. Image Segmentation Based on Non-Parametric Mixture Models of Chebyshev Orthogonal Polynomials of the Second Kind[J]. Journal of Computer Research and Development, 2011, 48(11): 2008-2014.
    [4]Zhu Feng, Luo Limin, Song Yuqing, Chen Jianmei, Zuo Xin. Adaptive Spatially Neighborhood Information Gaussian Mixture Model for Image Segmentation[J]. Journal of Computer Research and Development, 2011, 48(11): 2000-2007.
    [5]Chen Yunjie, Zhang Jianwei, Wang Shunfeng, Zhan Tianming. Brain MR Image Segmentation Based on Anisotropic Wells Model[J]. Journal of Computer Research and Development, 2010, 47(11): 1878-1885.
    [6]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.
    [7]Shi Chunqi, Shi Zhiping, Liu Xi, Shi Zhongzhi. Image Segmentation Based on Self-Organizing Dynamic Neural Network[J]. Journal of Computer Research and Development, 2009, 46(1): 23-30.
    [8]Chen Yunjie, Zhang Jianwei, Wei Zhihui, Xia Desheng, Heng Pheng Ann. Brain MRI Segmentation Using the Active Contours Based on Gaussian Mixture Models[J]. Journal of Computer Research and Development, 2007, 44(9): 1595-1603.
    [9]Shi Chengxian, Wang Hongyuan, Heng Pheng Ann, Xia Deshen. A Parametric Active Contour Model for Medical Image Segmentation Using Priori Shape Force Field[J]. Journal of Computer Research and Development, 2006, 43(12): 2131-2137.
    [10]Zhang Jianwei, Xia Deshen. An Image Segmentation Model Based on Dual Level Sets[J]. Journal of Computer Research and Development, 2006, 43(1): 120-125.

Catalog

    Article views (1303) PDF downloads (938) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return