• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Lin Weiwei, Yao Yingbiao, Zou Ke, Feng Wei, Yan Junrong. Correction Vector Based Distributed DV-Hop Localization Refinement Algorithm[J]. Journal of Computer Research and Development, 2019, 56(3): 585-593. DOI: 10.7544/issn1000-1239.2019.20170841
Citation: Lin Weiwei, Yao Yingbiao, Zou Ke, Feng Wei, Yan Junrong. Correction Vector Based Distributed DV-Hop Localization Refinement Algorithm[J]. Journal of Computer Research and Development, 2019, 56(3): 585-593. DOI: 10.7544/issn1000-1239.2019.20170841

Correction Vector Based Distributed DV-Hop Localization Refinement Algorithm

More Information
  • Published Date: February 28, 2019
  • Node location technology is one of the hot topics in current wireless sensor networks(WSNs). The DV-Hop (distance vector hop) localization algorithm, based on the hop distance estimation, is a typical representation of range-free localization algorithm. The advantages of DV-Hop is simple and easy implementation, and its disadvantage is low positioning accuracy which is resulting from the hop-distance ambiguity problem. Focusing on the hop-distance ambiguity problem of the traditional DV-Hop localization algorithm, this paper proposes a correction vector based distributed localization refinement algorithm (CVLR). Firstly, based on the localization results of DV-Hop, CVLR constructs the position correction vector using the pseudo ranging distance and the positioning distance between neighbors and unknown nodes. Secondly, the refinement process is modeled to minimize the square sum of the difference between the two distances in the direction of correction vector. Finally, a simple iterative search method is proposed to solve above minimization problem. In practice, CVLR consists of CVLR1 and CVLR2. CVLR1 can make full use of the information of 1-hop neighbors, and CVLR2 can make full use of the information of 1-hop and 2-hop neighbors. The simulation results show that, compared with DV-Hop, DV-RND (an improved DV-Hop localization algorithm based on regulated neighborhood distance), and DV-EA (an improved DV-Hop localization algorithm based on evolutionary algorithm), CVLR1 improves the positioning accuracy by about 30%, 25%, and 20%, and CVLR2 improves the positioning accuracy by about 45%, 42%, and 40%, on average.
  • Related Articles

    [1]Liu Zhaoqing, Gu Shilin, Hou Chenping. Online Classification Algorithm with Feature Inheritably Increasing and Decreasing[J]. Journal of Computer Research and Development, 2022, 59(8): 1668-1682. DOI: 10.7544/issn1000-1239.20220073
    [2]Nie Dongdong, Gong Yaoling. A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm[J]. Journal of Computer Research and Development, 2018, 55(5): 1090-1096. DOI: 10.7544/issn1000-1239.2018.20160829
    [3]Wang Yujun, Gao Qiankun, Zhang Xian, and Tao Qing. A Coordinate Descent Algorithm for Solving Capped-L1 Regularization Problems[J]. Journal of Computer Research and Development, 2014, 51(6): 1304-1312.
    [4]Liao Shizhong, Wang Mei, Zhao Zhihui. Regularization Path Algorithm of SVM via Positive Definite Matrix[J]. Journal of Computer Research and Development, 2013, 50(11): 2253-2261.
    [5]Wang Quan and Chen Songcan. Ensemble Learning of ELM Regressors Based on l1-regularization[J]. Journal of Computer Research and Development, 2012, 49(12): 2631-2637.
    [6]Kong Kang, Tao Qing, Wang Qunshan, Chu Dejun. A Sub-Gadient Based Solver for L1-Rgularization+Hinge-Loss Problem[J]. Journal of Computer Research and Development, 2012, 49(7): 1494-1499.
    [7]Huang Weixian and Wang Guojin. The L\-2 Distances for Rational Surfaces Based on Matrix Representation of Degree Elevation[J]. Journal of Computer Research and Development, 2010, 47(8): 1338-1345.
    [8]Yang Yuexiang, Luo Yong, Ye Zhaohui, Cheng Lizhi. A Complete Frequency Lossless Watermarking Method via Bandelet and Adaptive Matrix Norm[J]. Journal of Computer Research and Development, 2007, 44(12): 1996-2003.
    [9]Zhang Shichao, Xu Yinjun, Gu Ning, Shi Baile. A Norm-Driven Grid Workflow State Machine Model[J]. Journal of Computer Research and Development, 2006, 43(2): 307-313.
    [10]Tian Yongjun and Chen Songcan. Matrix-Pattern-Oriented Ho-Kashyap Classifier with Regularization Learning[J]. Journal of Computer Research and Development, 2005, 42(9): 1628-1632.

Catalog

    Article views (1169) PDF downloads (301) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return