• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Xiangwen, Lu Ziyao, Yang Jing, Lin Qian, Lu Yu, Wang Hongji, Su Jinsong. Weighted Lattice Based Recurrent Neural Networks for Sentence Semantic Representation Modeling[J]. Journal of Computer Research and Development, 2019, 56(4): 854-865. DOI: 10.7544/issn1000-1239.2019.20170917
Citation: Zhang Xiangwen, Lu Ziyao, Yang Jing, Lin Qian, Lu Yu, Wang Hongji, Su Jinsong. Weighted Lattice Based Recurrent Neural Networks for Sentence Semantic Representation Modeling[J]. Journal of Computer Research and Development, 2019, 56(4): 854-865. DOI: 10.7544/issn1000-1239.2019.20170917

Weighted Lattice Based Recurrent Neural Networks for Sentence Semantic Representation Modeling

More Information
  • Published Date: March 31, 2019
  • Currently, recurrent neural networks (RNNs) have been widely used in semantic representation modeling of text sequences in natural language processing. For those languages without natural word delimiters (e.g., Chinese), RNNs generally take the segmented word sequence as input. However, sub-optimal segmentation granularity and segmentation errors may affect sentence semantic modeling negatively, as well as subsequent natural language processing tasks. To address these issues, the proposed weighted word lattice based RNNs take the weighted word lattice as input and produce current state at each time step by integrating arbitrarily many input vectors and the corresponding previous hidden states. Weighted word lattice expresses a compressed data structure that contains exponential word segmentation results. To a certain extent, the weighted word lattice reflects the consistency of different word segmentation results. Specifically, lattice weights are further exploited as a supervised regularizer to refine weights modeling of the semantic composition operation in this model, leading to better sentence semantic representation learning. Compared with traditional RNNs, the proposed model not only alleviates the negative impact of segmentation errors but also is more expressive and flexible to sentence representation learning. Experimental results on sentiment classification and question classification tasks demonstrate the superiority of the proposed model.
  • Related Articles

    [1]Lu Shaoshuai, Chen Long, Lu Guangyue, Guan Ziyu, Xie Fei. Weakly-Supervised Contrastive Learning Framework for Few-Shot Sentiment Classification Tasks[J]. Journal of Computer Research and Development, 2022, 59(9): 2003-2014. DOI: 10.7544/issn1000-1239.20210699
    [2]Jia Xibin, Jin Ya, Chen Juncheng. Domain Alignment Based on Multi-Viewpoint Domain-Shared Feature for Cross-Domain Sentiment Classification[J]. Journal of Computer Research and Development, 2018, 55(11): 2439-2451. DOI: 10.7544/issn1000-1239.2018.20170496
    [3]Chen Long, Guan Ziyu, He Jinhong, Peng Jinye. A Survey on Sentiment Classification[J]. Journal of Computer Research and Development, 2017, 54(6): 1150-1170. DOI: 10.7544/issn1000-1239.2017.20160807
    [4]Zhang Zhifei, Miao Duoqian, Nie Jianyun, Yue Xiaodong. Sentiment Uncertainty Measure and Classification of Negative Sentences[J]. Journal of Computer Research and Development, 2015, 52(8): 1806-1816. DOI: 10.7544/issn1000-1239.2015.20150253
    [5]Zhao Chuanjun, Wang Suge, Li Deyu, Li Xin. Cross-Domain Text Sentiment Classification Based on Grouping-AdaBoost Ensemble[J]. Journal of Computer Research and Development, 2015, 52(3): 629-638. DOI: 10.7544/issn1000-1239.2015.20140156
    [6]Hou Yongshuai, Zhang Yaoyun, Wang Xiaolong, Chen Qingcai, Wang Yuliang, and Hu Baotian. Recognition and Retrieval of Time-sensitive Question in Chinese QA System[J]. Journal of Computer Research and Development, 2013, 50(12): 2612-2620.
    [7]Li Suke and Jiang Yanbing. Semi-Supervised Sentiment Classification Based on Sentiment Feature Clustering[J]. Journal of Computer Research and Development, 2013, 50(12): 2570-2577.
    [8]Wu Qiong, Liu Yue, Shen Huawei, Zhang Jin, Xu Hongbo, and Cheng Xueqi. A Unified Framework for Cross-Domain Sentiment Classification[J]. Journal of Computer Research and Development, 2013, 50(8): 1683-1689.
    [9]Lin Zheng, Tan Songbo, Cheng Xueqi. Sentiment Classification Analysis Based on Extraction of Sentiment Key Sentence[J]. Journal of Computer Research and Development, 2012, 49(11): 2376-2382.
    [10]Hu Yi, Lu Ruzhan, Li Xuening, Duan Jianyong, ChenYuquan. Research on Language Modeling Based Sentiment Classification of Text[J]. Journal of Computer Research and Development, 2007, 44(9): 1469-1475.
  • Cited by

    Periodical cited type(2)

    1. 邹洪,刘家豪,陈锋,农彩勤,王斌. 基于递归神经网络的原始训练数据防泄漏密码生成系统设计. 电子设计工程. 2022(05): 122-126 .
    2. 崔昕阳,龙华,熊新,邵玉斌,杜庆治. 基于并行双向门控循环单元与自注意力机制的中文文本情感分类. 北京化工大学学报(自然科学版). 2020(02): 115-123 .

    Other cited types(8)

Catalog

    Article views (1033) PDF downloads (402) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return