• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Luo Sheng, Miao Duoqian, Zhang Zhifei, Zhang Yuanjian, Hu Shengdan. A Link Prediction Model Based on Hierarchical Information Granular Representation for Attributed Graphs[J]. Journal of Computer Research and Development, 2019, 56(3): 623-634. DOI: 10.7544/issn1000-1239.2019.20170961
Citation: Luo Sheng, Miao Duoqian, Zhang Zhifei, Zhang Yuanjian, Hu Shengdan. A Link Prediction Model Based on Hierarchical Information Granular Representation for Attributed Graphs[J]. Journal of Computer Research and Development, 2019, 56(3): 623-634. DOI: 10.7544/issn1000-1239.2019.20170961

A Link Prediction Model Based on Hierarchical Information Granular Representation for Attributed Graphs

More Information
  • Published Date: February 28, 2019
  • With the accumulation of the network graph data coupled with node attributes, the relations between node attributes and node linkages become more and more complex, which brings a lot of challenges to the task of the link prediction in complex network. The main reason is the inconsistency existing in the different source data, that is, the relations between the latent linkages which are implied by the node attributes and the observed linkages from network topological structure, respectively. This phenomenon directly affects the correctness and accuracy of link predictions. In order to effectively deal with multi-source data inconsistency and fuse the heterogeneous data, with the idea of granular computing and data multi-layer granular representation, we model the original data at different levels of granular representation. According to the data granular representation, we ultimately eliminate data inherent inconsistencies by finding the optimal granular structure. In this paper, we firstly define the data granular representation and the relation between different level granular; Then, we construct a log-likelihood model of the data, and place a lot of constraints decided by the granular relations to regularize the model; At last, we use the trained model to perform the link probability between nodes. Experiments show that, multi-source data can ultimately reduce the inconsistency by granular representation, and the statistic model regulated by these granular relations outperforms the state-of-the-art methods, and effectively improves the accuracy of the link prediction in the attributed graph.
  • Related Articles

    [1]Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
    [2]Wang Rui, Qi Jianpeng, Chen Liang, Yang Long. Survey of Collaborative Inference for Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(2): 398-414. DOI: 10.7544/issn1000-1239.202110867
    [3]Zhang Wenzhu, Yu Jinghua. Task Offloading Strategy in Mobile Edge Computing Based on Cloud-Edge-End Cooperation[J]. Journal of Computer Research and Development, 2023, 60(2): 371-385. DOI: 10.7544/issn1000-1239.202110803
    [4]Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
    [5]Huang Qianyi, Li Zhiyang, Xie Wentao, Zhang Qian. Edge Computing in Smart Homes[J]. Journal of Computer Research and Development, 2020, 57(9): 1800-1809. DOI: 10.7544/issn1000-1239.2020.20200253
    [6]Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
    [7]Ning Zhenyu, Zhang Fengwei, Shi Weisong. A Study of Using TEE on Edge Computing[J]. Journal of Computer Research and Development, 2019, 56(7): 1441-1453. DOI: 10.7544/issn1000-1239.2019.20180522
    [8]Shi Weisong, Zhang Xingzhou, Wang Yifan, Zhang Qingyang. Edge Computing: State-of-the-Art and Future Directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89. DOI: 10.7544/issn1000-1239.2019.20180760
    [9]Deng Xiaoheng, Guan Peiyuan, Wan Zhiwen, Liu Enlu, Luo Jie, Zhao Zhihui, Liu Yajun, Zhang Honggang. Integrated Trust Based Resource Cooperation in Edge Computing[J]. Journal of Computer Research and Development, 2018, 55(3): 449-477. DOI: 10.7544/issn1000-1239.2018.20170800
    [10]Zhao Ziming, Liu Fang, Cai Zhiping, Xiao Nong. Edge Computing: Platforms, Applications and Challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327-337. DOI: 10.7544/issn1000-1239.2018.20170228

Catalog

    Article views (991) PDF downloads (281) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return