• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Jingwei, Liu Shaojian, Yang Qing, Zhou Ya. DMFUCP: A Distributed Mining Framework for Universal Companion Patterns on Large-Scale Trajectory Data[J]. Journal of Computer Research and Development, 2022, 59(3): 647-660. DOI: 10.7544/issn1000-1239.20200648
Citation: Zhang Jingwei, Liu Shaojian, Yang Qing, Zhou Ya. DMFUCP: A Distributed Mining Framework for Universal Companion Patterns on Large-Scale Trajectory Data[J]. Journal of Computer Research and Development, 2022, 59(3): 647-660. DOI: 10.7544/issn1000-1239.20200648

DMFUCP: A Distributed Mining Framework for Universal Companion Patterns on Large-Scale Trajectory Data

Funds: This work was supported by the National Natural Science Foundation of China (61862013, 61662015, U1811264, U1711263), the Natural Science Foundation of Guangxi Aotonomous Region of China (2020GXNSFAA159117, 2018GXNSFAA281199, 2017GXNSFAA198035), the Key Project of Guangxi Key Laboratory of Trusted Software (KX202052), and the Foundation of Guangxi Key Laboratory of Automatic Detection Technology and Instrument (YQ19109).
More Information
  • Published Date: February 28, 2022
  • The popularity of mobile positioning terminals makes users’ locations be easily accessible, which contributes huge amount of trajectory data. Universal companion pattern mining aims at discovering those highly overlapping behavior paths between moving objects in spatio-temporal dimensions, and it is very valuable and challenging to provide effective and efficient pattern mining methods on large-scale trajectories. Obviously, the mining strategy on a centralized environment is incompetent for the consideration of scalability caused by huge and growing trajectory data. Existing distributed mining frameworks are weak in both providing effective input for efficient pattern mining and the processing ability on a large number of loose connections in massive trajectories, which should be covered to improve mining performance. In this study, we propose a distributed two-stage mining framework, DMFUCP, which embeds optimization on data preprocessing and loose connection analysis to provide more efficient and effective universal companion pattern mining. In the data preprocessing stage of DMFUCP, we design both a density clustering algorithm DBSCANCD and a clustering balance algorithm TCB to input high-quality trajectory data with less noisy for mining tasks. In the mining stage of DMFUCP, we propose both a G pruning repartition algorithm GSPR and a segmented enumeration algorithm SAE. GSPR introduces a parameter G to segment long trajectories and then repartitions all segments to improve the processing effectiveness on loose connections. SAE guarantees the mining performance through multithreading and forward closure. Compared with those existing companion pattern mining frameworks on real datasets, DMFUCP reduces the time required to mine each set of universal companion pattern by 20% to 40% while providing better universal companion pattern discovery capabilities.
  • Related Articles

    [1]Zhu Minghang, Liu Xin, Yu Zhenning, Xu Xing, Zheng Shukai. Cross Face-Voice Matching Method via Bi-Pseudo Label Based Self-Supervised Learning[J]. Journal of Computer Research and Development, 2023, 60(11): 2638-2649. DOI: 10.7544/issn1000-1239.202220411
    [2]Fan Ye, Peng Shujuan, Liu Xin, Cui Zhen, Wang Nannan. Cross-Modal Anomaly Detection via Hierarchical Deep Networks and Bi-Quintuple Loss[J]. Journal of Computer Research and Development, 2022, 59(12): 2770-2780. DOI: 10.7544/issn1000-1239.20210729
    [3]Li Xudong, Zhang Jianming, Xie Zhipeng, Wang Jin. A Fast Traffic Sign Detection Algorithm Based on Three-Scale Nested Residual Structures[J]. Journal of Computer Research and Development, 2020, 57(5): 1022-1036. DOI: 10.7544/issn1000-1239.2020.20190445
    [4]Wu Jinjin, Liu Quan, Chen Song, Yan Yan. Averaged Weighted Double Deep Q-Network[J]. Journal of Computer Research and Development, 2020, 57(3): 576-589. DOI: 10.7544/issn1000-1239.2020.20190159
    [5]Huang Haiping, Zhang Dongjun, Wang Kai, Zhu Yikai, Wang Ruchuan. Weighted Large-Scale Social Network Data Privacy Protection Method[J]. Journal of Computer Research and Development, 2020, 57(2): 363-377. DOI: 10.7544/issn1000-1239.2020.20190018
    [6]Lin Xin, Tian Xin, Ji Yi, Xu Yunlong, Liu Chunping. Scene Graph Generation Based on Shuffle Residual Context Information[J]. Journal of Computer Research and Development, 2019, 56(8): 1721-1730. DOI: 10.7544/issn1000-1239.2019.20190329
    [7]Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128
    [8]Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465
    [9]Zhang Xiaochi, Yu Hua, Gong Xiujun. A Random Walk Based Iterative Weighted Algorithm for Sub-Graph Query[J]. Journal of Computer Research and Development, 2015, 52(12): 2824-2833. DOI: 10.7544/issn1000-1239.2015.20140801
    [10]Fu Yunqing, Wang Songjian, and Wu Zhongfu. A Routing Protocol of Wireless Mesh Network Based on Weighted Link State[J]. Journal of Computer Research and Development, 2009, 46(1): 137-143.

Catalog

    Article views (282) PDF downloads (122) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return